Skip to main content
Log in

Environmental toxicant-mediated cardiovascular diseases: an insight into the mechanism and possible preventive strategy

  • Mini Review
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Background

Cardiovascular system is saddled with responsibility of pumping blood into circulation, thereby providing nourishment to tissues and removal of metabolic wastes. However, several environmental factors limit this simple but crucial function. It is still difficult to establish a link between environmental toxins and cardiovascular disease. Examining the research connecting alterations in the cardiovascular system to some of the most frequent environmental exposures is the goal of this review.

Methods

Literature review was conducted by searching the keyword environmental contaminants and cardiovascular disease in major search engines such as Google Scholar, PubMed, Scopus, ScienceDirect, and ResearchGate.

Results

Studies repeatedly show a decrease in the cardiovascular system’s functionality that cannot be fully explained by obesity, recognized genetic factors, or dietary and lifestyle modifications alone. Over the same period of time as this declines in heart and vascular function, human exposures have undergone a significant change. Nearly 2,000 new compounds are launched each year, and more over 80,000 substances have been registered with the US National Toxicology Program. Many of them are recognized poisons, including heavy metals, phthalates, polycyclic aromatic hydrocarbons, polyfluoroalkyl compounds, microplastics/nanoplastics, and organophosphate esters, which have been outlawed or severely regulated in other nations due to their known systemic harmful effects. Many of these chemicals still have legal exposure limits in the majority of developing nations, despite being recognized to impair the cardiovascular system.

Conclusion

Various pathological mechanisms were highlighted in this review. However, exposure avoidance and risk reduction are crucial for the health of cardiovascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Sources: Marris et al. [117]

Similar content being viewed by others

References

  1. Münzel T, Miller MR, Sørensen M, Lelieveld J, Daiber A, Rajagopalan S (2020) Reduction of environmental pollutants for prevention of cardiovascular disease: it’s time to act. Eur Heart J 41(41):3989

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hamed AL (2022) Air pollution and cardiovascular diseases. J Environ Stud 28(1):56–68

    Article  Google Scholar 

  3. Patino JE, Hong A, Duque JC, Rahimi K, Zapata S, Lopera VM (2021) Built environment and mortality risk from cardiovascular disease and diabetes in Medellín, Colombia: an ecological study. Landsc Urban Plan 213:104126

    Article  Google Scholar 

  4. Vogel B, Acevedo M, Appelman Y, Merz CN, Chieffo A, Figtree GA, Guerrero M, Kunadian V, Lam CS, Maas AH, Mihailidou AS (2021) The Lancet women and cardiovascular disease Commission: reducing the global burden by 2030. Lancet 397(10292):2385–2438

    Article  PubMed  Google Scholar 

  5. Rajagopalan S, Landrigan PJ (2021) Pollution and the heart. N Engl J Med 385(20):1881–1892

    Article  CAS  PubMed  Google Scholar 

  6. Mehta NK, Abrams LR, Myrskylä M (2020) US life expectancy stalls due to cardiovascular disease, not drug deaths. Proc Natl Acad Sci 117(13):6998–7000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pourbagher-Shahri AM, Farkhondeh T, Talebi M, Kopustinskiene DM, Samarghandian S, Bernatoniene J (2021) An overview of NO signaling pathways in aging. Molecules 26(15):4533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Summers K, Lamper A, Buck K (2021) National hazards vulnerability and the remediation, restoration and revitalization of contaminated sites—1. Superfund Environ Manag 67:1029–1042

    Article  Google Scholar 

  9. Miller CJ, Runge-Morris M, Cassidy-Bushrow AE, Straughen JK, Dittrich TM, Baker TR, Petriello MC, Mor G, Ruden DM, O’Leary BF, Teimoori S (2020) A review of volatile organic compound contamination in post-industrial urban centers: reproductive health implications using a detroit lens. Int J Environ Res Public Health 17(23):8755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin HC, Hao WM, Chu PH (2021) Cadmium and cardiovascular disease: An overview of pathophysiology, epidemiology, therapy, and predictive value. Rev Portuguesa de Cardiol (English Edition) 40(8):611–617

    Article  Google Scholar 

  11. Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A (2020) The effects of cadmium toxicity. Int J Environ Res Public Health 17(11):3782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vlachou C, Vejdovszky K, Griesbacher A, Fuchs K, Steinwider J, Hofstädter D (2022) Probabilistic estimation of the aggregate dietary and inhalation exposure of austrian adults to cadmium and health risk assessment. Exposure Health 14(4):843–856

    Article  CAS  Google Scholar 

  13. Satarug S, Gobe GC, Vesey DA (2022) Multiple targets of toxicity in environmental exposure to low-dose cadmium. Toxics 10(8):472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Habeeb E, Aldosari S, Saghir SA, Cheema M, Momenah T, Husain K, Omidi Y, Rizvi SA, Akram M, Ansari RA (2022) Role of environmental toxicants in the development of hypertensive and cardiovascular diseases. Toxicol Rep 9:521–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aleksandrov AP, Mirkov I, Tucovic D, Kulas J, Zeljkovic M, Popovic D, Ninkov M, Jankovic S, Kataranovski M (2021) Immunomodulation by heavy metals as a contributing factor to inflammatory diseases and autoimmune reactions: cadmium as an example. Immunol Lett 240:106–122

    Article  Google Scholar 

  16. Sevim Ç, Doğan E, Comakli S (2020) Cardiovascular disease and toxic metals. Curr Opinion Toxicol 19:88–92

    Article  Google Scholar 

  17. Unsal V, Dalkıran T, Çiçek M, Kölükçü E (2020) The role of natural antioxidants against reactive oxygen species produced by cadmium toxicity: a review. Adv Pharm Bull 10(2):184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tägt J, Helte E, Donat-Vargas C, Larsson SC, Michaëlsson K, Wolk A, Vahter M, Kippler M, Åkesson A (2022) Long-term cadmium exposure and fractures, cardiovascular disease, and mortality in a prospective cohort of women. Environ Int 161:107114

    Article  PubMed  Google Scholar 

  19. Khouja JN, Suddell SF, Peters SE, Taylor AE, Munafò MR (2021) Is e-cigarette use in non-smoking young adults associated with later smoking? a systematic review and meta-analysis. Tob Control 30(1):8–15

    Article  Google Scholar 

  20. Diaz D, Ujueta F, Mansur G, Lamas GA, Navas-Acien A, Arenas IA (2021) Low-level cadmium exposure and atherosclerosis. Curr Environ Health Rep 8:42–53

    Article  CAS  PubMed  Google Scholar 

  21. Ngueta G, Ndjaboue R (2020) Lifetime marijuana use in relation to cadmium body burden of US adults: results from the national health and nutrition examination surveys, 2009–2016. Public Health 187:77–83

    Article  CAS  PubMed  Google Scholar 

  22. Zhang X, Xue W, Zhang C, Wang C, Huang Y, Wang Y, Peng L, Liu Z (2023) Cadmium pollution leads to selectivity loss of glutamate receptor channels for permeation of Ca2+/Mn2+/Fe2+/Zn2+ over Cd2+ in rice plant. J Hazard Mater 452:131342

    Article  CAS  PubMed  Google Scholar 

  23. Javadifar A, Rastgoo S, Banach M, Jamialahmadi T, Johnston TP, Sahebkar A (2021) Foam cells as therapeutic targets in atherosclerosis with a focus on the regulatory roles of non-coding RNAs. Int J Mol Sci 22(5):2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bolan S, Seshadri B, Keely S, Kunhikrishnan A, Bruce J, Grainge I, Talley NJ, Naidu R (2021) Bioavailability of arsenic, cadmium, lead and mercury as measured by intestinal permeability. Sci Rep 11(1):1–14

    Article  Google Scholar 

  25. Almenara CC, Oliveira TF, Padilha AS (2020) The role of antioxidants in the prevention of cadmium-induced endothelial dysfunction. Curr Pharm Des 26(30):3667–3675

    Article  PubMed  Google Scholar 

  26. Martins AC, Santos AA, Lopes AC, Skalny AV, Aschner M, Tinkov AA, Paoliello M (2021) Endothelial dysfunction induced by cadmium and mercury and its relationship to hypertension. Curr Hypertens Rev 17(1):14–26

    Article  CAS  PubMed  Google Scholar 

  27. Lu GF, Chen SC, Xia YP, Ye ZM, Cao F, Hu B (2021) Synergistic inflammatory signaling by cGAS may be involved in the development of atherosclerosis. Aging (Albany NY) 13(4):5650

    Article  CAS  PubMed  Google Scholar 

  28. Skuland T, Låg M, Gutleb AC, Brinchmann BC, Serchi T, Øvrevik J, Holme JA, Refsnes M (2020) Pro-inflammatory effects of crystalline-and nano-sized non-crystalline silica particles in a 3D alveolar model. Part Fibre Toxicol 17:1–8

    Article  Google Scholar 

  29. Cai J, Guan H, Jiao X, Yang J, Chen X, Zhang H, Zheng Y, Zhu Y, Liu Q, Zhang Z (2021) NLRP3 inflammasome mediated pyroptosis is involved in cadmium exposure-induced neuroinflammation through the IL-1β/IkB-α-NF-κB-NLRP3 feedback loop in swine. Toxicology 453:152720

    Article  CAS  PubMed  Google Scholar 

  30. Almenara CC, de Oliveira TF, da Silva DC, Krause M, Carneiro MT, Padilha AS (2023) Cessation restores blood pressure levels and endothelial function affected by cadmium exposure on rats. Biol Trace Elem Res 201(4):1955–1964

    Article  CAS  PubMed  Google Scholar 

  31. Fagerberg B, Barregard L (2021) Review of cadmium exposure and smoking-independent effects on atherosclerotic cardiovascular disease in the general population. J Intern Med 290(6):1153–1179

    Article  CAS  PubMed  Google Scholar 

  32. Bimonte VM, Besharat ZM, Antonioni A, Cella V, Lenzi A, Ferretti E, Migliaccio S (2021) The endocrine disruptor cadmium: a new player in the pathophysiology of metabolic diseases. J Endocrinol Invest 44:1363–1377

    Article  CAS  PubMed  Google Scholar 

  33. Mirończuk A, Kapica-Topczewska K, Socha K, Soroczyńska J, Jamiołkowski J, Chorąży M, Czarnowska A, Mitrosz A, Kułakowska A, Kochanowicz J (2023) Disturbed ratios between essential and toxic trace elements as potential biomarkers of acute ischemic stroke. Nutrients 15(6):1434

    Article  PubMed  PubMed Central  Google Scholar 

  34. Poulsen AH, Sears CG, Harrington J, Howe CJ, James KA, Roswall N, Overvad K, Tjønneland A, Wellenius GA, Meliker J, Raaschou-Nielsen O (2021) Urinary cadmium and stroke-a case-cohort study in Danish never-smokers. Environ Res 200:111394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yue Y, Nair N, Quinones S, Kordas K, Desai G (2022) Associations of total urinary arsenic with total cholesterol and high-density lipoprotein among 12–17-year-old participants from the 2009–2016 NHANES cycles: a cross-sectional study. Int J Hyg Environ Health 242:113950

    Article  CAS  PubMed  Google Scholar 

  36. Criqui MH, Matsushita K, Aboyans V, Hess CN, Hicks CW, Kwan TW, McDermott MM, Misra S, Ujueta F (2021) Lower extremity peripheral artery disease: contemporary epidemiology, management gaps, and future directions: a scientific statement from the American Heart Association. Circulation 144(9):e171–e191

    Article  PubMed  PubMed Central  Google Scholar 

  37. Imanaka-Yoshida K (2020) Inflammation in myocardial disease: From myocarditis to dilated cardiomyopathy. Pathol Int 70(1):1–1

    Article  PubMed  Google Scholar 

  38. Kar I, Patra AK (2021) Tissue bioaccumulation and toxicopathological effects of cadmium and its dietary amelioration in poultry: a review. Biol Trace Elem Res 199(10):3846–3868

    Article  CAS  PubMed  Google Scholar 

  39. Liu Y, Pan J, Fan C, Xu R, Wang Y, Xu C, Xie S, Zhang H, Cui X, Peng Z, Shi C (2021) Short-term exposure to ambient air pollution and mortality from myocardial infarction. J Am Coll Cardiol 77(3):271–281

    Article  CAS  PubMed  Google Scholar 

  40. Sears CG, Eliot M, Raaschou-Nielsen O, Poulsen AH, Harrington JM, Howe CJ, James KA, Roswall N, Overvad K, Tjønneland A, Meliker J (2021) Urinary cadmium and incident heart failure: a case–cohort analysis among never-smokers in Denmark. Epidemiology 33(2):185–192

    Article  Google Scholar 

  41. Lamas GA, Ujueta F, Navas-Acien A (2021) Lead and cadmium as cardiovascular risk factors: the burden of proof has been met. J Am Heart Assoc 10(10):e018692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lauria G, Catalano A, Carocci A, Sinicropi MS (2022) Arsenic: a review on a great health issue worldwide. Appl Sci 12(12):6184

    Article  Google Scholar 

  43. El-Ghiaty MA, El-Kadi AO (2023) The duality of arsenic metabolism: impact on human health. Annu Rev Pharmacol Toxicol 63:341–358

    Article  CAS  PubMed  Google Scholar 

  44. Shiek SS, Sajai ST, Dsouza HS (2023) Arsenic-induced toxicity and the ameliorative role of antioxidants and natural compounds. J Biochem Mol Toxicol 37(3):e23281

    Article  CAS  PubMed  Google Scholar 

  45. Byeon E, Kang HM, Yoon C, Lee JS (2021) Toxicity mechanisms of arsenic compounds in aquatic organisms. Aquat Toxicol 237:105901

    Article  CAS  PubMed  Google Scholar 

  46. Muzaffar S, Khan J, Srivastava R, Gorbatyuk MS, Athar M (2023) Mechanistic understanding of the toxic effects of arsenic and warfare arsenicals on human health and environment. Cell Biol Toxicol 39(1):85–110

    Article  CAS  PubMed  Google Scholar 

  47. Kumar SK, Ghosh A, Bharti DA (2022) Mental health in arsenic-induced cancer: a study from middle Gangetic plain of Bihar, India. J Water Sanitation Hygiene Dev 12(10):711–720

    Article  Google Scholar 

  48. Mishra D, Sen K, Mondal A, Kundu S, Mondal NK (2022) Geochemical appraisal of groundwater arsenic contamination and human health risk assessment in the Gangetic Basin in Murshidabad District of West Bengal, India. Environ Earth Sci 81(5):157

    Article  CAS  Google Scholar 

  49. Biswas I, Khan GA (2020) Endothelial dysfunction in cardiovascular diseases. Basic Clin Underst Microcirc 10

  50. Asiwe JN, Yovwin GD, Ekene NE, Ovuakporaye SI, Nnamudi AC, Nwangwa EK (2023) Ginkgo biloba modulates ET-I/NO signalling in Lead Acetate induced rat model of endothelial dysfunction: Involvement of oxido-inflammatory mediators. Int J Environ Health Res 26:1–2

    Google Scholar 

  51. Asiwe JN, Ovuakporaye SI, Ben-Azu B, Dauda JU, Igben VJ, Ahama EE, Ehebha ES, Igbokwe VU (2023) Inhibition of oxido-inflammatory and apoptotic pathway is involved in the protective effect of Ginkgo biloba supplement in cyclosporine-A induced vascular dysfunction in Wistar rat. Pharmacol Res-Mod Chin Med 7:100252

    Article  Google Scholar 

  52. Sun Y, Wang X, Liu T, Zhu X, Pan X (2022) The multifaceted role of the SASP in atherosclerosis: from mechanisms to therapeutic opportunities. Cell Biosci 12(1):1–20

    Article  CAS  Google Scholar 

  53. Méndez-Morales ST, Pérez-De Marcos JC, Rodríguez-Cortés O, Flores-Mejía R, Martínez-Venegas M, Sánchez-Vera Y, Tamay-Cach F, Lomeli-Gonzaléz J, Reyes AE, Lehman-Mendoza R, Martínez-Arredondo HA (2022) Diabetic neuropathy: molecular approach a treatment opportunity. Vascul Pharmacol 143:106954

    Article  PubMed  Google Scholar 

  54. Alonso-Piñeiro JA, Gonzalez-Rovira A, Sánchez-Gomar I, Moreno JA, Durán-Ruiz MC (2021) Nrf2 and heme oxygenase-1 involvement in atherosclerosis related oxidative stress. Antioxidants 10(9):1463

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gantait AM, Bataineh YA, Surchi HS, Gantait A, Rani GT, Paul P, Kokaz SF, Al-Jaidi BA, Kumar P, Karan S, Singha T (2020) Neuropeptides and neurotransmission. Front Pharmacol Neurotransm 553–77

  56. da Silva GM, da Silva MC, Nascimento DV, Lima Silva EM, Gouvêa FF, de França Lopes LG, Araújo AV, Ferraz Pereira KN, de Queiroz TM (2021) Nitric oxide as a central molecule in hypertension: focus on the vasorelaxant activity of new nitric oxide donors. Biology 10(10):1041

    Article  PubMed  PubMed Central  Google Scholar 

  57. Varlamova EG, Turovsky EA (2021) The main cytotoxic effects of methylseleninic acid on various cancer cells. Int J Mol Sci 22(12):6614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ushio-Fukai M, Ash D, Nagarkoti S, Belin de Chantemèle EJ, Fulton DJ, Fukai T (2021) Interplay between reactive oxygen/reactive nitrogen species and metabolism in vascular biology and disease. Antioxidants Redox Signal 34(16):1319–1354

  59. Balarastaghi S, Rezaee R, Hayes AW, Yarmohammadi F, Karimi G (2023) Mechanisms of arsenic exposure-induced hypertension and atherosclerosis: an updated overview. Biol Trace Elem Res 201(1):98–113

    Article  CAS  PubMed  Google Scholar 

  60. Yousaf H, Khan MI, Ali I, Munir MU, Lee KY (2023) Emerging role of macrophages in non-infectious diseases: an update. Biomed Pharmacother 161:114426

    Article  CAS  PubMed  Google Scholar 

  61. Yadav S, Priya A, Borade DR, Agrawal-Rajput R (2023) Macrophage subsets and their role: co-relation with colony-stimulating factor-1 receptor and clinical relevance. Immunol Res 71(2):130–152

    Article  CAS  PubMed  Google Scholar 

  62. Pfaff A, Chernatynskaya A, Vineyard H, Ercal N (2022) Thiol antioxidants protect human lens epithelial (HLE B-3) cells against tert-butyl hydroperoxide-induced oxidative damage and cytotoxicity. Biochemistry and Biophysics Reports 29:101213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim K, Shin EK, Chung JH, Lim KM (2020) Arsenic induces platelet shape change through altering focal adhesion kinase-mediated actin dynamics, contributing to increased platelet reactivity. Toxicol Appl Pharmacol 391:114912

    Article  CAS  PubMed  Google Scholar 

  64. Song LT, Tada H, Nishioka T, Nemoto E, Imamura T, Potempa J, Li CY, Matsushita K, Sugawara S (2022) Porphyromonas gingivalis gingipains-mediated degradation of plasminogen activator inhibitor-1 leads to delayed wound healing responses in human endothelial cells. J Innate Immun 14(4):306–319

    Article  CAS  PubMed  Google Scholar 

  65. Dong Y, Zhou M, Zhang M, Wang H, Chen Y, Liu X, Yang S, Lang H, Sun G, Li X (2022) The association between arsenic metabolism and hypertension among population with varying arsenic exposure levels in China. Exposure Health 14(2):411–430

    Article  CAS  Google Scholar 

  66. Rahaman MS, Rahman MM, Mise N, Sikder MT, Ichihara G, Uddin MK, Kurasaki M, Ichihara S (2021) Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ Pollut 289:117940

    Article  CAS  PubMed  Google Scholar 

  67. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M (2021) Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol 227

  68. Roy NK, Murphy A, Costa M (2020) Arsenic methyltransferase and methylation of inorganic arsenic. Biomolecules 10(9):1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Firoozichahak A, Rahimnejad S, Rahmani A, Parvizimehr A, Aghaei A, Rahimpoor R (2022) Effect of occupational exposure to lead on serum levels of lipid profile and liver enzymes: an occupational cohort study. Toxicol Rep 9:269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Asiwe JN, Kolawole TA, Ben-Azu B, Ajayi AM, Ojetola AA, Moke EG, Nwangwa EK (2022) Up-regulation of B-cell lymphoma factor-2 expression, inhibition of oxidative stress and down-regulation of pro-inflammatory cytokines are involved in the protective effect of cabbage (Brassica oleracea) juice in lead-induced endothelial dysfunction in rats. J Trace Elem Med Biol 73:127014

    Article  CAS  PubMed  Google Scholar 

  71. Asiwe JN, Ekene EN, Agbugba LC, Moke EG, Akintade AV, Ben-Azu B, Eruotor H, Daubry TM, Anachuna KK, Oyovwi MO (2023) Ginkgo biloba supplement abates lead-induced endothelial and testicular dysfunction in Wistar rats via up-regulation of Bcl-2 protein expression, pituitary-testicular hormones and down-regulation of oxido-inflammatory reactions. J Trace Elem Med Biol 79:127216

    Article  CAS  PubMed  Google Scholar 

  72. Arsenault BJ, Kamstrup PR (2022) Lipoprotein (a) and cardiovascular and valvular diseases: a genetic epidemiological perspective. Atherosclerosis 349:7–16

    Article  CAS  PubMed  Google Scholar 

  73. Baran R, Marchal S, Garcia Campos S, Rehnberg E, Tabury K, Baselet B, Wehland M, Grimm D, Baatout S (2021) The cardiovascular system in space: Focus on in vivo and in vitro studies. Biomedicines 10(1):59

    Article  PubMed  PubMed Central  Google Scholar 

  74. Davuljigari CB, Gottipolu RR (2020) Late-life cardiac injury in rats following early life exposure to lead: reversal effect of nutrient metal mixture. Cardiovasc Toxicol 20:249–260

    Article  CAS  PubMed  Google Scholar 

  75. He A, Hu S, Pi Q, Guo Y, Long Y, Luo S, Xia Y (2020) Regulation of O-GlcNAcylation on endothelial nitric oxide synthase by glucose deprivation and identification of its O-GlcNAcylation sites. Sci Rep 10(1):19364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tamir Hostovsky L, Pan J, McNamara PJ, Belik J (2020) Acetaminophen increases pulmonary and systemic vasomotor tone in the newborn rat. Pediatr Res 87(7):1171–1176

    Article  CAS  PubMed  Google Scholar 

  77. Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AW, McGonigle D, Russell AE (2004) Lost at sea: where is all the plastic? Science 304(5672):838

  78. Chen X, Wang Y, Zhang L (2021) Recent progress in the chemical upcycling of plastic wastes. Chemsuschem 14(19):4137–4151

    Article  CAS  PubMed  Google Scholar 

  79. Kumar V, Singh E, Singh S, Pandey A, Bhargava PC (2023) Micro-and nano-plastics (MNPs) as emerging pollutant in ground water: environmental impact, potential risks, limitations and way forward towards sustainable management. Chem Eng J 459:141568

    Article  CAS  Google Scholar 

  80. Osman AI, Hosny M, Eltaweil AS, Omar S, Elgarahy AM, Farghali M, Yap PS, Wu YS, Nagandran S, Batumalaie K, Gopinath SC (2023) Microplastic sources, formation, toxicity and remediation: a review. Environ Chem Lett 21(4):2129–2169

    Article  CAS  Google Scholar 

  81. Campanale C, Massarelli C, Savino I, Locaputo V, Uricchio VF (2020) A detailed review study on potential effects of microplastics and additives of concern on human health. Int J Environ Res Public Health 17(4):1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Luan X, Cui X, Zhang L, Chen X, Li X, Feng X, Chen L, Liu W, Cui Z (2021) Dynamic material flow analysis of plastics in China from 1950 to 2050. J Clean Prod 327:129492

    Article  CAS  Google Scholar 

  83. Lund JW, Toth AN (2021) Direct utilization of geothermal energy 2020 worldwide review. Geothermics 90:101915

    Article  Google Scholar 

  84. Zolotova N, Kosyreva A, Dzhalilova D, Fokichev N, Makarova O (2022) Harmful effects of the microplastic pollution on animal health: a literature review. PeerJ 10:e13503

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F, Roy PD (2023) Microplastic diagnostics in humans: “The 3Ps” Progress, problems, and prospects. Sci Total Environ 856:159164

    Article  CAS  PubMed  Google Scholar 

  86. Danopoulos E, Twiddy M, West R, Rotchell JM (2022) A rapid review and meta-regression analyses of the toxicological impacts of microplastic exposure in human cells. J Hazard Mater 427:127861

    Article  CAS  PubMed  Google Scholar 

  87. Lett Z, Hall A, Skidmore S, Alves NJ (2021) Environmental microplastic and nanoplastic: exposure routes and effects on coagulation and the cardiovascular system. Environ Pollut 291:118190

    Article  CAS  PubMed  Google Scholar 

  88. López de las Hazas MC, Boughanem H, Dávalos A (2022) Untoward effects of micro-and nanoplastics: an expert review of their biological impact and epigenetic effects. Adv Nutr 13(4):1310–1323

  89. Zhu X, Wang C, Duan X, Liang B, Xu EG, Huang Z (2022) Micro-and nanoplastics: a new cardiovascular risk factor? Environ Int 107662

  90. Wei J, Wang X, Liu Q, Zhou N, Zhu S, Li Z, Li X, Yao J, Zhang L (2021) The impact of polystyrene microplastics on cardiomyocytes pyroptosis through NLRP3/Caspase-1 signaling pathway and oxidative stress in Wistar rats. Environ Toxicol 36(5):935–944

    Article  CAS  PubMed  Google Scholar 

  91. Roshanzadeh A, Oyunbaatar NE, Ganjbakhsh SE, Park S, Kim DS, Kanade PP, Lee S, Lee DW, Kim ES (2021) Exposure to nanoplastics impairs collective contractility of neonatal cardiomyocytes under electrical synchronization. Biomaterials 278:121175

    Article  CAS  PubMed  Google Scholar 

  92. Zhao Z, Liu M, Zhang Y, Liang Y, Ma D, Wang H, Ma Z, Guan S, Wu Z, Chu X, Lin Y (2020) Cardioprotective effect of monoammonium glycyrrhizinate injection against myocardial ischemic injury in vivo and in vitro: involvement of inhibiting oxidative stress and regulating Ca2+ homeostasis by L-type calcium channels. Drug Des Dev Ther 23:331–346

    Article  Google Scholar 

  93. Wallace TC, Bailey RL, Blumberg JB, Burton-Freeman B, Chen CO, Crowe-White KM, Drewnowski A, Hooshmand S, Johnson E, Lewis R, Murray R (2020) Fruits, vegetables, and health: a comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Crit Rev Food Sci Nutr 60(13):2174–2211

    Article  CAS  PubMed  Google Scholar 

  94. Münzel T, Hahad O, Sørensen M, Lelieveld J, Duerr GD, Nieuwenhuijsen M, Daiber A (2022) Environmental risk factors and cardiovascular diseases: a comprehensive expert review. Cardiovasc Res 118(14):2880–2902

    Article  PubMed  Google Scholar 

  95. Zhang Z, Weichenthal S, Kwong JC, Burnett RT, Hatzopoulou M, Jerrett M, Donkelaar AV, Bai L, Martin RV, Copes R, Lu H (2021) Long-term exposure to iron and copper in fine particulate air pollution and their combined impact on reactive oxygen species concentration in lung fluid: a population-based cohort study of cardiovascular disease incidence and mortality in Toronto, Canada. Int J Epidemiol 50(2):589–601

    Article  PubMed  Google Scholar 

  96. Donia T, Khamis A (2021) Management of oxidative stress and inflammation in cardiovascular diseases: mechanisms and challenges. Environ Sci Pollut Res 28(26):34121–34153

    Article  CAS  Google Scholar 

  97. Lu L, Xiang M, Lu H, Tian Z, Gao Y (2022) Progress in quantification of nicotine content and form distribution in electronic cigarette liquids and aerosols. Anal Methods 14(4):359–377

    Article  CAS  PubMed  Google Scholar 

  98. Loud EE, Duong HT, Henderson KC, Reynolds RM, Ashley DL, Thrasher JF, Popova L (2022) Addicted to smoking or addicted to nicotine? A focus group study on perceptions of nicotine and addiction among US adult current smokers, former smokers, non-smokers and dual users of cigarettes and e-cigarettes. Addiction 117(2):472–481

    Article  PubMed  Google Scholar 

  99. Xu T, Niu ZY, Xu J, Li XD, Luo Q, Luo A, Huang YL, Jiang XT, Wu ZH (2022) Chemical analysis of selected harmful and potentially harmful constituents and in vitro toxicological evaluation of leading flavoured e‐cigarette aerosols in the Chinese market. Drug Test Anal

  100. Mohammadi L, Han DD, Xu F, Huang A, Derakhshandeh R, Rao P, Whitlatch A, Cheng J, Keith RJ, Hamburg NM, Ganz P (2022) Chronic e-cigarette use impairs endothelial function on the physiological and cellular levels. Arterioscler Thromb Vasc Biol 42(11):1333–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Demir V, Hidayet S, Turan Y, Ede H (2020) Acute effects of electronic cigarette smoking on ventricular repolarization in adults. Afr Health Sci 20(4):1793–1799

    Article  PubMed  PubMed Central  Google Scholar 

  102. Alarabi AB, Lozano PA, Khasawneh FT, Alshbool FZ (2022) The effect of emerging tobacco related products and their toxic constituents on thrombosis. Life Sci 290:120255

    Article  CAS  PubMed  Google Scholar 

  103. Larcombe A, Allard S, Pringle P, Mead-Hunter R, Anderson N, Mullins B (2022) Chemical analysis of fresh and aged Australian e-cigarette liquids. Med J Aust 216(1):27–32

    Article  PubMed  Google Scholar 

  104. Sun K, Song Y, He F, Jing M, Tang J, Liu R (2021) A review of human and animals exposure to polycyclic aromatic hydrocarbons: Health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. Sci Total Environ 773:145403

    Article  CAS  PubMed  Google Scholar 

  105. Miller MR (2020) Oxidative stress and the cardiovascular effects of air pollution. Free Radical Biol Med 151:69–87

    Article  CAS  Google Scholar 

  106. Shrestha R, Lieberth J, Tillman S, Natalizio J, Bloomekatz J. Using zebrafish to analyze the genetic and environmental etiologies of congenital heart defects. Anim Models Hum Birth Defects 189–223

  107. Klimanova EA, Sidorenko SV, Abramicheva PA, Tverskoi AM, Orlov SN, Lopina OD (2020) Transcriptomic changes in endothelial cells triggered by Na, K-ATPase inhibition: a search for upstream Na+ i/K+ i sensitive genes. Int J Mol Sci 21(21):7992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Suzuki T, Hidaka T, Kumagai Y, Yamamoto M (2020) Environmental pollutants and the immune response. Nat Immunol 21(12):1486–1495

    Article  PubMed  Google Scholar 

  109. Grishanova AY, Klyushova LS, Perepechaeva ML (2023) AhR and Wnt/β-Catenin signaling pathways and their interplay. Curr Issues Mol Biol 45(5):3848–3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Incardona JP, Linbo TL, French BL, Cameron J, Peck KA, Laetz CA, Hicks MB, Hutchinson G, Allan SE, Boyd DT, Ylitalo GM (2021) Low-level embryonic crude oil exposure disrupts ventricular ballooning and subsequent trabeculation in Pacific herring. Aquat Toxicol 235:105810

    Article  CAS  PubMed  Google Scholar 

  111. Xi X, Ye Q, Fan D, Cao X, Wang Q, Wang X, Zhang M, Xu Y, Xiao C (2022) Polycyclic aromatic hydrocarbons affect rheumatoid arthritis pathogenesis via aryl hydrocarbon receptor. Front Immunol 13:797815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Segner H, Bailey C, Tafalla C, Bo J (2021) Immunotoxicity of xenobiotics in fish: a role for the aryl hydrocarbon receptor (AhR)? Int J Mol Sci 22(17):9460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Goedtke L, Sprenger H, Hofmann U, Schmidt FF, Hammer HS, Zanger UM, Poetz O, Seidel A, Braeuning A, Hessel-Pras S (2020) Polycyclic aromatic hydrocarbons activate the aryl hydrocarbon receptor and the constitutive androstane receptor to regulate xenobiotic metabolism in human liver cells. Int J Mol Sci 22(1):372

    Article  PubMed  PubMed Central  Google Scholar 

  114. Posada-Baquero R, Semple KT, Ternero M, Ortega-Calvo JJ (2022) Determining the bioavailability of benzo (a) pyrene through standardized desorption extraction in a certified reference contaminated soil. Sci Total Environ 803:150025

    Article  CAS  PubMed  Google Scholar 

  115. Wu J, Pang T, Lin Z, Zhao M, Jin H (2022) The key player in the pathogenesis of environmental influence of systemic lupus erythematosus: aryl hydrocarbon receptor. Front Immunol 13:965941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Leclerc D, Pires AC, Guillemin GJ, Gilot D (2021) Detrimental activation of AhR pathway in cancer: an overview of therapeutic strategies. Curr Opin Immunol 70:15–26

    Article  CAS  PubMed  Google Scholar 

  117. Marris CR, Kompella SN, Miller MR, Incardona JP, Brette F, Hancox JC, Sørhus E, Shiels HA (2020) Polyaromatic hydrocarbons in pollution: a heart-breaking matter. J Physiol 598(2):227–247

    Article  CAS  PubMed  Google Scholar 

  118. Kay JE, Cardona B, Rudel RA, Vandenberg LN, Soto AM, Christiansen S, Birnbaum LS, Fenton SE (2022) Chemical effects on breast development, function, and cancer risk: existing knowledge and new opportunities. Curr Environ Health Rep 9(4):535–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hansen BH, Nordtug T, Farkas J, Khan EA, Oteri E, Kvæstad B, Faksness LG, Daling PS, Arukwe A (2021) Toxicity and developmental effects of arctic fuel oil types on early life stages of Atlantic cod (Gadus morhua). Aquat Toxicol 237:105881

    Article  CAS  PubMed  Google Scholar 

  120. Bhagat J, Nishimura N, Shimada Y (2021) Toxicological interactions of microplastics/nanoplastics and environmental contaminants: current knowledge and future perspectives. J Hazard Mater 405:123913

    Article  CAS  PubMed  Google Scholar 

  121. Junaid M, Liu S, Chen G, Liao H, Wang J (2023) Transgenerational impacts of micro (nano) plastics in the aquatic and terrestrial environment. J Hazard Mater 443:130–274

    Article  Google Scholar 

  122. Joshi SS, Miller MR, Newby DE (2022) Air pollution and cardiovascular disease: the Paul Wood lecture, British Cardiovascular Society 2021. Heart 108(16):1267–1273

    Article  CAS  PubMed  Google Scholar 

  123. de Bont J, Jaganathan S, Dahlquist M, Persson Å, Stafoggia M, Ljungman P (2022) Ambient air pollution and cardiovascular diseases: an umbrella review of systematic reviews and meta-analyses. J Intern Med 291(6):779–800

    Article  PubMed  PubMed Central  Google Scholar 

  124. Daiber A, Frenis K, Kuntic M, Li H, Wolf E, Kilgallen AB, Lecour S, Van Laake LW, Schulz R, Hahad O, Münzel T (2022) Redox regulatory changes of circadian rhythm by the environmental risk factors traffic noise and air pollution. Antioxid Redox Signal 37(10–12):679–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang X, Xu Z, Su H, Ho HC, Song Y, Zheng H, Hossain MZ, Khan MA, Bogale D, Zhang H, Wei J (2021) Ambient particulate matter (PM1, PM2. 5, PM10) and childhood pneumonia: the smaller particle, the greater short-term impact?. Sci Total Environ 772:145509

  126. Li Z, Zhu S, Liu Q, Wei J, Jin Y, Wang X, Zhang L (2020) Polystyrene microplastics cause cardiac fibrosis by activating Wnt/β-catenin signaling pathway and promoting cardiomyocyte apoptosis in rats. Environ Pollut 265:115025

    Article  CAS  PubMed  Google Scholar 

  127. Kumar P, Singh AB, Arora T, Singh S, Singh R (2023) Critical review on emerging health effects associated with the indoor air quality and its sustainable management. Sci Total Environ 872:162163

    Article  CAS  PubMed  Google Scholar 

  128. Liu Y, Yuan Q, Zhang X, Chen Z, Jia X, Wang M, Xu T, Wang Z, Jiang J, Ma Q, Zhang M (2023) Fine particulate matter (PM2. 5) induces inhibitory memory alveolar macrophages through the AhR/IL-33 pathway. Cell Immunol 386:104694

  129. Yao Y, Lu T, Liu Y, Qin Q, Jiang J, Xiang H (2022) Association of depressive symptoms with ambient PM2. 5 in middle-aged and elderly Chinese adults: a cross-sectional study from the China health and Retirement Longitudinal Study wave 4. Environ Res 203:111889

  130. Chen Q, Ma X, Geng Y, Liao J, Ma L (2022) Association between smoking and hypertension under different PM2. 5 and green space exposure: a nationwide cross-sectional study. Front Public Health 10:1026648

  131. Bai L, Benmarhnia T, Chen C, Kwong JC, Burnett RT, van Donkelaar A, Martin RV, Kim J, Kaufman JS, Chen H (2022) Chronic exposure to fine particulate matter increases mortality through pathways of metabolic and cardiovascular disease: insights from a large mediation analysis. J Am Heart Assoc 11(22):e026660

    Article  PubMed  PubMed Central  Google Scholar 

  132. Fu G, An X, Liu H, Tian Y, Wang P (2020) Assessment of the impact of PM2.5 exposure on the daily mortality of circulatory system in Shijiazhuang, China. Atmosphere 11(9):1018

  133. Valderrama A, Zapata MI, Hernandez JC, Cardona-Arias JA (2022) Systematic review of preclinical studies on the neutrophil-mediated immune response to air pollutants, 1980–2020. Heliyon

  134. Hong J, Kang JM, Cho SE, Jung J, Kang SG (2023) Significant association between increased risk of emergency department visits for psychiatric disorders and air pollutants in South Korea. J Eposure Sci Environ Epidemiol 33(3):490–499

    Article  CAS  Google Scholar 

  135. Yin P, Guo J, Wang L, Fan W, Lu F, Guo M, Moreno SB, Wang Y, Wang H, Zhou M, Dong Z (2020) Higher risk of cardiovascular disease associated with smaller size-fractioned particulate matter. Environ Sci Technol Lett 7(2):95–101

    Article  CAS  Google Scholar 

  136. Poulsen AH, Sørensen M, Hvidtfeldt UA, Brandt J, Frohn LM, Ketzel M, Christensen JH, Im U, Raaschou-Nielsen O (2023) ‘Source-specific’air pollution and risk of stroke in Denmark. Int J Epidemiol 52(3):727–737

    Article  PubMed  Google Scholar 

  137. Cheek E, Guercio V, Shrubsole C, Dimitroulopoulou S (2021) Portable air purification: Review of impacts on indoor air quality and health. Sci Total Environ 766:142585

    Article  CAS  PubMed  Google Scholar 

  138. Daiber A, Kuntic M, Hahad O, Delogu LG, Rohrbach S, Di Lisa F, Schulz R, Münzel T (2020) Effects of air pollution particles (ultrafine and fine particulate matter) on mitochondrial function and oxidative stress–Implications for cardiovascular and neurodegenerative diseases. Arch Biochem Biophys 696:108662

    Article  CAS  PubMed  Google Scholar 

  139. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, Bonny A (2020) Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol 76(25):2982–3021

    Article  PubMed  PubMed Central  Google Scholar 

  140. Konduracka E, Rostoff P (2022) Links between chronic exposure to outdoor air pollution and cardiovascular diseases: a review. Environ Chem Lett 20(5):2971–2988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bo X, Guo J, Wan R, Jia Y, Yang Z, Lu Y, Wei M (2022) Characteristics, correlations and health risks of PCDD/Fs and heavy metals in surface soil near municipal solid waste incineration plants in Southwest China. Environ Pollut 298:118816

    Article  CAS  PubMed  Google Scholar 

  142. Panesar HK, Kennedy CL, Keil Stietz KP, Lein PJ (2020) Polychlorinated biphenyls (PCBs): risk factors for autism spectrum disorder? Toxics 8(3):70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Liu X, Cao W, Liu X, Zhou Y, Wen S (2022) Associations between maternal polychlorinated dibenzo-p-dioxin and dibenzofuran serum concentrations and pulse pressure in early pregnancy: a cross-sectional study. Int J Environ Res Public Health 19(21):13785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Pinder M, Fry RC, Alexis NE (2020) Environmental contaminants and the immune system: a systems perspective. In: Environmental epigenetics in toxicology and public health 2020 (pp. 217–237). Academic Press

  145. Toson ES, Saad EA, Omar HA (2022) Occupational exposure to gasoline in gasoline station male attendants promotes M1 polarization in macrophages. Environ Sci Pollut Res 29(5):6399–6413

    Article  CAS  Google Scholar 

  146. Hsu CN, Tain YL (2021) Adverse impact of environmental chemicals on developmental origins of kidney disease and hypertension. Front Endocrinol 12:745716

    Article  Google Scholar 

  147. Rajagopalan S, Brauer M, Bhatnagar A, Bhatt DL, Brook JR, Huang W, Münzel T, Newby D, Siegel J, Brook RD (2020) American Heart Association Council on Lifestyle and Cardiometabolic Health; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Clinical Cardiology; Council on Cardiovascular and Stroke Nursing; and Stroke Council. Personal-level protective actions against particulate matter air pollution exposure: a scientific statement from the American Heart Association. Circulation 142(23):e411–e431

  148. Al-Kindi SG, Brook RD, Biswal S, Rajagopalan S (2020) Environmental determinants of cardiovascular disease: lessons learned from air pollution. Nat Rev Cardiol 17(10):656–672

    Article  PubMed  PubMed Central  Google Scholar 

  149. Nong D, Wang C, Al-Amin AQ (2020) A critical review of energy resources, policies and scientific studies towards a cleaner and more sustainable economy in Vietnam. Renew Sustain Energy Rev 134:110117

    Article  Google Scholar 

  150. Hidalgo D, Bedate SS. Economic valuation and cost of air pollution. In: Handbook of research on energy and environmental finance 4.0 2022 (pp 278–300). IGI Global

  151. Rai GK, Bhat BA, Mushtaq M, Tariq L, Rai PK, Basu U, Dar AA, Islam ST, Dar TU, Bhat JA (2021) Insights into decontamination of soils by phytoremediation: a detailed account on heavy metal toxicity and mitigation strategies. Physiol Plant 173(1):287–304

    CAS  PubMed  Google Scholar 

  152. Nguyen TQ, Sesin V, Kisiala A, Emery RN (2021) Phytohormonal roles in plant responses to heavy metal stress: Implications for using macrophytes in phytoremediation of aquatic ecosystems. Environ Toxicol Chem 40(1):7–22

    Article  CAS  PubMed  Google Scholar 

  153. Timilsina GR (2021) Are renewable energy technologies cost competitive for electricity generation? Renew Energy 180:658–672

    Article  Google Scholar 

  154. Bogdanov D, Ram M, Aghahosseini A, Gulagi A, Oyewo AS, Child M, Caldera U, Sadovskaia K, Farfan J, Barbosa LD, Fasihi M (2021) Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy 227:120467

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the management of Delta State University Medical Library for their assistance and support.

Author information

Authors and Affiliations

Authors

Contributions

This review was conceptualized by Jerome Ndudy Asiwe, and the literature search was done by Benjamin Oritsemuelebi and Jerome Ndudy Asiwe. The first draft of this manuscript was written by Benjamin Oritsemuelebi, and the final draft was written by Jerome Ndudy Asiwe.

Corresponding author

Correspondence to Jerome Ndudi Asiwe.

Ethics declarations

Conflict of interest

Jerome Ndudi Asiwe and Benjamin Oritsemuelebi declare that we have no conflict of interest.

Ethical approval

This article does not contain any studies with human subjects or animals performed by any of the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asiwe, J.N., Oritsemuelebi, B. Environmental toxicant-mediated cardiovascular diseases: an insight into the mechanism and possible preventive strategy. Toxicol. Environ. Health Sci. 16, 1–19 (2024). https://doi.org/10.1007/s13530-023-00196-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-023-00196-3

Keywords

Navigation