Skip to main content

Advertisement

Log in

Dual anti-angiogenic and anti-metastatic activity of myriocin synergistically enhances the anti-tumor activity of cisplatin

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Tumor microenvironment consists of various kind of cells, forming complex interactions and signal transductions for tumor growth. Due to this complexity, targeting multiple kinases could yield improved clinical outcomes. In this study, we aimed to investigate the potential of myriocin, from Mycelia sterilia, as a novel dual-kinase inhibitor and suggest myriocin as a candidate for combined chemotherapy.

Methods

We initially evaluated the anti-tumor and anti-metastatic effect of myriocin in mouse allograft tumor models. We examined the effects of myriocin on angiogenesis and tumor vasculature using in vitro, in vivo, and ex vivo models, and also tested the anti-migration effect of myriocin in in vitro models. Next, we explored the effects of myriocin alone and in combination with cisplatin on tumor growth and vascular normalization in mouse models.

Results

We found that myriocin inhibited tumor growth and lung metastasis in mouse allograft tumor models. Myriocin induced normalization of the tumor vasculature in the mouse models. We also found that myriocin suppressed angiogenesis through the VEGFR2/PI3K/AKT pathway in endothelial cells (ECs), as well as cancer cell migration by blocking the IκBα/NF-κB(p65)/MMP-9 pathway. Finally, we found that myriocin enhanced the drug delivery efficacy of cisplatin by increasing the integrity of tumor vasculature in the mouse models, which synergistically increased the anti-tumor activity of cisplatin.

Conclusion

We suggest that myriocin is a novel potent anti-cancer agent that dually targets both VEGFR2 in ECs and IκBα in cancer cells, and exerts more pronounced anti-tumor effects than with either kinase being inhibited alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article.

References

  1. L. Claesson-Welsh, M. Welsh, J. Intern. Med. 273, 114–127 (2013). https://doi.org/10.1111/joim.12019

    Article  CAS  PubMed  Google Scholar 

  2. C. Fontanella, E. Ongaro, S. Bolzonello, M. Guardascione, G. Fasola, G. Aprile, Ann. Transl. Med. 2, 123 (2014). https://doi.org/10.3978/j.issn.2305-5839.2014.08.14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. O. Casanovas, D.J. Hicklin, G. Bergers, D. Hanahan, Cancer Cell 8, 299–309 (2005). https://doi.org/10.1016/j.ccr.2005.09.005

    Article  CAS  PubMed  Google Scholar 

  4. R.K. Jain, Nat. Med. 7, 987–989 (2001). https://doi.org/10.1038/nm0901-987

    Article  CAS  PubMed  Google Scholar 

  5. Y. Huang, S. Goel, D.G. Duda, D. Fukumura, R.K. Jain, Cancer Res. 73, 2943–2948 (2013). https://doi.org/10.1158/0008-5472.CAN-12-4354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. G. Gonzalez-Avila, B. Sommer, D.A. Mendoza-Posada, C. Ramos, A.A. Garcia-Hernandez, R. Falfan-Valencia, Crit. Rev. Oncol. Hematol. 137, 57–83 (2019). https://doi.org/10.1016/j.critrevonc.2019.02.010

    Article  PubMed  Google Scholar 

  7. H. Nagase, R. Visse, G. Murphy, Cardiovasc. Res. 69, 562–573 (2006). https://doi.org/10.1016/j.cardiores.2005.12.002

    Article  CAS  PubMed  Google Scholar 

  8. J.A. DiDonato, F. Mercurio, M. Karin, Immunol. Rev. 246, 379–400 (2012). https://doi.org/10.1111/j.1600-065X.2012.01099.x

    Article  CAS  PubMed  Google Scholar 

  9. K. Taniguchi, M. Karin, Nat. Rev. Immunol. 18, 309–324 (2018). https://doi.org/10.1038/nri.2017.142

    Article  CAS  PubMed  Google Scholar 

  10. N.M. Anderson, M.C. Simon, Curr. Biol. 30, R921–R925 (2020). https://doi.org/10.1016/j.cub.2020.06.081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. A. Lachenmayer, S. Toffanin, L. Cabellos, C. Alsinet, Y. Hoshida, A. Villanueva, B. Minguez, H.W. Tsai, S.C. Ward, S. Thung, S.L. Friedman, J.M. Llovet, J. Hepatol. 56, 1343–1350 (2012). https://doi.org/10.1016/j.jhep.2012.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. V. Ramakrishnan, M. Timm, J.L. Haug, T.K. Kimlinger, L.E. Wellik, T.E. Witzig, S.V. Rajkumar, A.A. Adjei, S. Kumar, Oncogene 29, 1190–1202 (2010). https://doi.org/10.1038/onc.2009.403

    Article  CAS  PubMed  Google Scholar 

  13. J. Rios-Doria, M. Favata, K. Lasky, P. Feldman, Y. Lo, G. Yang, C. Stevens, X. Wen, S. Sehra, K. Katiyar, K. Liu, R. Wynn, J.J. Harris, M. Ye, S. Spitz, X. Wang, C. He, Y.L. Li, W. Yao, M. Covington, P. Scherle, H. Koblish, Front. Oncol. 10, 598477 (2020). https://doi.org/10.3389/fonc.2020.598477

    Article  PubMed  PubMed Central  Google Scholar 

  14. D.K. Graham, D. DeRyckere, K.D. Davies, H.S. Earp, Nat. Rev. Cancer 14, 769–785 (2014). https://doi.org/10.1038/nrc3847

    Article  CAS  PubMed  Google Scholar 

  15. Y. Miyake, Y. Kozutsumi, S. Nakamura, T. Fujita, T. Kawasaki, Biochem. Biophys. Res. Commun. 211, 396–403 (1995). https://doi.org/10.1006/bbrc.1995.1827

    Article  CAS  PubMed  Google Scholar 

  16. Y.S. Lee, K.M. Choi, M.H. Choi, S.Y. Ji, S. Lee, D.M. Sin, K.W. Oh, Y.M. Lee, J.T. Hong, Y.P. Yun, H.S. Yoo, Cell Prolif. 44, 320–329 (2011). https://doi.org/10.1111/j.1365-2184.2011.00761.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Y.S. Lee, K.M. Choi, S. Lee, D.M. Sin, Y. Lim, Y.M. Lee, J.T. Hong, Y.P. Yun, H.S. Yoo, Cancer Biol. Ther. 13, 92–100 (2012). https://doi.org/10.4161/cbt.13.2.18870

    Article  CAS  PubMed  Google Scholar 

  18. K.E. Choi, Y.S. Jung, D.H. Kim, J.K. Song, J.Y. Kim, Y.Y. Jung, S.Y. Eum, J.H. Kim, N.Y. Yoon, H.S. Yoo, S.B. Han, J.T. Hong, Arch. Pharm. Res. 37, 501–511 (2014). https://doi.org/10.1007/s12272-013-0315-z

    Article  CAS  PubMed  Google Scholar 

  19. R. Ordonez, A. Fernandez, N. Prieto-Dominguez, L. Martinez, C. Garcia-Ruiz, J.C. Fernandez-Checa, J.L. Mauriz, J. Gonzalez-Gallego, J. Pineal. Res. 59, 178–189 (2015). https://doi.org/10.1111/jpi.12249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. V.K. Bhat, E. Bernhart, I. Plastira, K. Fan, N. Ghaffari-Tabrizi-Wizsy, C. Wadsack, G. Rechberger, T. Eichmann, M. Asslaber, I. Spassova, M.E. Verhaegen, E. Malle, J.C. Becker, W. Sattler, J. Invest. Dermatol. 139, 807–817 (2019). https://doi.org/10.1016/j.jid.2018.10.024

    Article  CAS  PubMed  Google Scholar 

  21. P. Zhou, Z. Li, D. Xu, Y. Wang, Q. Bai, Y. Feng, G. Su, P. Chen, Y. Wang, H. Liu, X. Wang, R. Zhang, Y. Wang, Front. Cell. Infect. Microbiol. 9, 225 (2019). https://doi.org/10.3389/fcimb.2019.00225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. J.H. Woo, J.H. Lim, Y.H. Kim, S.I. Suh, D.S. Min, J.S. Chang, Y.H. Lee, J.W. Park, T.K. Kwon, Oncogene 23, 1845–1853 (2004). https://doi.org/10.1038/sj.onc.1207307

    Article  CAS  PubMed  Google Scholar 

  23. J.B. Fitzgerald, B. Schoeberl, U.B. Nielsen, P.K. Sorger, Nat. Chem. Biol. 2, 458–466 (2006). https://doi.org/10.1038/nchembio817

    Article  CAS  PubMed  Google Scholar 

  24. E.V. Berdyshev, I. Gorshkova, A. Skobeleva, R. Bittman, X. Lu, S.M. Dudek, T. Mirzapoiazova, J.G. Garcia, V. Natarajan, J. Biol. Chem. 284, 5467–5477 (2009). https://doi.org/10.1074/jbc.M805186200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. T. Baumruker, A. Billich, V. Brinkmann, Expert Opin. Investig. Drugs 16, 283–289 (2007). https://doi.org/10.1517/13543784.16.3.283

    Article  CAS  PubMed  Google Scholar 

  26. D. Wang, C.R. Stockard, L. Harkins, P. Lott, C. Salih, K. Yuan, D. Buchsbaum, A. Hashim, M. Zayzafoon, R.W. Hardy, O. Hameed, W. Grizzle, G.P. Siegal, Biotech. Histochem. 83, 179–189 (2008). https://doi.org/10.1080/10520290802451085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. L. Dubois, W. Landuyt, K. Haustermans, P. Dupont, G. Bormans, P. Vermaelen, P. Flamen, E. Verbeken, L. Mortelmans, Br. J. Cancer. 91, 1947–1954 (2004). https://doi.org/10.1038/sj.bjc.6602219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. A.I. Bachir, A.R. Horwitz, W.J. Nelson and J.M. Bianchini, Cold Spring Harb Perspect Biol 9, a023234 (2017). https://doi.org/10.1101/cshperspect.a023234

  29. Y.A. Komarova, K. Kruse, D. Mehta, A.B. Malik, Circ. Res. 120, 179–206 (2017). https://doi.org/10.1161/CIRCRESAHA.116.306534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. S. Spiegel, S. Milstien, Nat. Rev. Mol. Cell Biol. 4, 397–407 (2003). https://doi.org/10.1038/nrm1103

    Article  CAS  PubMed  Google Scholar 

  31. X. Shu, W. Wu, R.D. Mosteller, D. Broek, Mol. Cell. Biol. 22, 7758–7768 (2002). https://doi.org/10.1128/MCB.22.22.7758-7768.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Y. Wang, H. Wu, R. Deng, Eur. J. Pharmacol. 910, 174500 (2021). https://doi.org/10.1016/j.ejphar.2021.174500

    Article  CAS  PubMed  Google Scholar 

  33. J. Gavard, J.S. Gutkind, Nat Cell Biol 8, 1223–1234 (2006). https://doi.org/10.1038/ncb1486

    Article  CAS  PubMed  Google Scholar 

  34. M. Rodrigues, X. Xin, K. Jee, S. Babapoor-Farrokhran, F. Kashiwabuchi, T. Ma, I. Bhutto, S.J. Hassan, Y. Daoud, D. Baranano, S. Solomon, G. Lutty, G.L. Semenza, S. Montaner, A. Sodhi, Diabetes 62, 3863–3873 (2013). https://doi.org/10.2337/db13-0014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. F. Christian, E.L. Smith and R.J. Carmody, Cells 5, 12 (2016). https://doi.org/10.3390/cells5010012

  36. C.J. Weng, C.F. Chau, Y.S. Hsieh, S.F. Yang, G.C. Yen, Carcinogenesis 29, 147–156 (2008). https://doi.org/10.1093/carcin/bgm261

    Article  CAS  PubMed  Google Scholar 

  37. T. Takahra, D.E. Smart, F. Oakley, D.A. Mann, Int J Biochem Cell Biol 36, 353–363 (2004). https://doi.org/10.1016/s1357-2725(03)00260-7

    Article  CAS  PubMed  Google Scholar 

  38. M. Cully, Nat Rev Drug Discov 16, 87 (2017). https://doi.org/10.1038/nrd.2017.4

    Article  CAS  PubMed  Google Scholar 

  39. C. Jiao, K. Adler, X. Liu, W. Sun, R.F. Mullins, E.H. Sohn, Translat. Vision Sci. Technol. 9, 1–1 (2020)

    Article  Google Scholar 

  40. S. Hong, D.-W. Zheng, C. Zhang, Q.-X. Huang, S.-X. Cheng, X.-Z. Zhang, Sci. Adv. 6, eabb0020 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. F. Bussolino, A. Mantovani, G. Persico, Trends Biochem Sci 22, 251–256 (1997). https://doi.org/10.1016/s0968-0004(97)01074-8

    Article  CAS  PubMed  Google Scholar 

  42. A.A. Abdelghany, E.A. Toraih, A.A. Mohamed, R.M. Lashine, M.H.S. Mohammad, M.S. Nafie, M.S. Fawzy, Ophthalmic Res 64, 261–272 (2021). https://doi.org/10.1159/000511087

    Article  CAS  PubMed  Google Scholar 

  43. F. Shaik, G.A. Cuthbert, S. Homer-Vanniasinkam, S.P. Muench, S. Ponnambalam and M.A. Harrison, Biomolecules 10, (2020) https://doi.org/10.3390/biom10121673

  44. X.L. Chen, J.O. Nam, C. Jean, C. Lawson, C.T. Walsh, E. Goka, S.T. Lim, A. Tomar, I. Tancioni, S. Uryu, J.L. Guan, L.M. Acevedo, S.M. Weis, D.A. Cheresh, D.D. Schlaepfer, Dev Cell 22, 146–157 (2012). https://doi.org/10.1016/j.devcel.2011.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. I. Shiojima, K. Walsh, Circ Res 90, 1243–1250 (2002). https://doi.org/10.1161/01.res.0000022200.71892.9f

    Article  CAS  PubMed  Google Scholar 

  46. V.A. Balaji Ragunathrao, M. Anwar, M.Z. Akhter, A. Chavez, Y. Mao, V. Natarajan, S. Lakshmikanthan, M. Chrzanowska-Wodnicka, A.Z. Dudek, L. Claesson-Welsh, J.K. Kitajewski, K.K. Wary, A.B. Malik and D. Mehta, Cell. Rep. 29, 3472–3487 e3474 (2019) https://doi.org/10.1016/j.celrep.2019.11.036

  47. S. Quintero-Fabian, R. Arreola, E. Becerril-Villanueva, J.C. Torres-Romero, V. Arana-Argaez, J. Lara-Riegos, M.A. Ramirez-Camacho, M.E. Alvarez-Sanchez, Front Oncol 9, 1370 (2019). https://doi.org/10.3389/fonc.2019.01370

    Article  PubMed  PubMed Central  Google Scholar 

  48. A. Caretti, A. Bragonzi, M. Facchini, I. De Fino, C. Riva, P. Gasco, C. Musicanti, J. Casas, G. Fabrias, R. Ghidoni, P. Signorelli, Biochim Biophys Acta 1840, 586–594 (2014). https://doi.org/10.1016/j.bbagen.2013.10.018

    Article  CAS  PubMed  Google Scholar 

  49. Y. Wang, N.Y. Park, Y. Jang, A. Ma, Q. Jiang, J Immunol 195, 126–133 (2015). https://doi.org/10.4049/jimmunol.1403149

    Article  CAS  PubMed  Google Scholar 

  50. D.W. Siemann, Cancer Treat. Rev. 37, 63–74 (2011)

    Article  CAS  PubMed  Google Scholar 

  51. S. Chouaib, Y. Messai, S. Couve, B. Escudier, M. Hasmim, M.Z. Noman, Front. Immunol. 3, 21 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  52. X. Jiang, J. Wang, X. Deng, F. Xiong, S. Zhang, Z. Gong, X. Li, K. Cao, H. Deng, Y. He, J. Exp. Clin. Cancer Res. 39, 1–19 (2020)

    Article  Google Scholar 

  53. S. Azzi, J.K. Hebda, J. Gavard, Front. Oncol. 3, 211 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  54. D. Ferland-McCollough, S. Slater, J. Richard, C. Reni, G. Mangialardi, Pharmacol. Ther. 171, 30–42 (2017). https://doi.org/10.1016/j.pharmthera.2016.11.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Y. Shen, S. Li, X. Wang, M. Wang, Q. Tian, J. Yang, J. Wang, B. Wang, P. Liu, J. Yang, J. Exp. Clin. Cancer Res. 38, 427 (2019). https://doi.org/10.1186/s13046-019-1366-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by National Research Foundation (NRF) grants funded by the Korean government (MSIP) (2017R1A2B3002227 & 2020R1A5A2017323).

Author information

Authors and Affiliations

Authors

Contributions

YML directed this project. J-HJ, HJ, SK, and SL designed in vitro and in vivo experiments. J-HJ, UO, HJ, SK, and SL performed the experiments and data analysis. J-HJ, HJ and YML interpreted the data. J-HJ and YML wrote the manuscript.

Corresponding author

Correspondence to You Mie Lee.

Ethics declarations

Ethical approval and Consent to participate

All the animal experiments in the study were conducted according to the Guidelines for Care and Use of Laboratory Animals issued by the Institutional Ethical Animal Care Committee of Kyungpook National University (Protocol number: KNU 2014–0189 and KNU 2017–0145). No any human participants were involved.

Human ethics

Not applicable.

Consent for publication

All authors have agreed to publish this manuscript.

Competing interests

The authors declare no potential conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Supplementary file2 (DOCX 45 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, JH., Ojha, U., Jang, H. et al. Dual anti-angiogenic and anti-metastatic activity of myriocin synergistically enhances the anti-tumor activity of cisplatin. Cell Oncol. 46, 117–132 (2023). https://doi.org/10.1007/s13402-022-00737-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-022-00737-x

Keywords

Navigation