Skip to main content
Log in

Successive photocatalytic degradation of methylene blue by CuO, Fe2O3, and novel nanocomposite CuO/Fe2O3 synthesized from Mentha pulegium plant extract via biosynthesis technique

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The demand for environmentally friendly and sustainable materials has raised awareness of bio-reinforced nanocomposites. Using the green synthesis technique and Mentha pulegium extract as a reducing agent, a novel CuO/Fe2O3 nanocomposite was developed. The structural and optical properties of CuO/Fe2O3 nanocomposite were investigated using X-ray diffraction (XRD), UV-visible, and Fourier-transform infrared (FTIR) spectroscopies. The obtained CuO/Fe2O3 nanocomposite exhibits absorption at 290 nm with a direct bandgap ranging from 4.73 to 5.06 eV and an indirect bandgap of 2.60 to 2.90 eV, according to UV-visible spectra. FTIR analysis exhibits appearance three peaks at 566, 485, and 467 cm−1 attributed to the CuO NPs, Fe2O3 NPs, and CuO/Fe2O3 nanocomposites binding of iron and copper(II) chloride. The produced nanoparticles formed a hexagonal and monoclinic crystal structure with a crystallite size of approximately 22.93 nm, according to X-ray diffraction (XRD) research results. By using visible and UV-vis spectroscopy, the catalytic activity of produced CuO/Fe2O3 in the breakdown of methylene blue (MB) dye was investigated, and the results were compared to the catalytic activity of CuO and Fe2O3 NPs. The decolorization ratios of dye for CuO/Fe2O3 nanocomposite were 99.52% within 120 min, while CuO and Fe2O3 NPs reduced by 62.15% and 74.83%, respectively. The present research highlights the importance of metallic nanocomposite produced by green synthesis for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Basit RA et al (2023) Successive photocatalytic degradation of methylene blue by ZnO, CuO and ZnO/CuO synthesized from Coriandrum sativum plant extract via green synthesis technique. Crystals 13(2):281

    Article  Google Scholar 

  2. BinSabt M et al (2022) Green synthesis of CS-TiO2 NPs for efficient photocatalytic degradation of methylene blue dye. Polymers 14(13):2677

    Article  Google Scholar 

  3. Li N et al (2022) Recent developments in functional nanocomposite photocatalysts for wastewater treatment: a review. Adv Sustain Syst 6(7):2200106

    Article  Google Scholar 

  4. Emmanuel SS, Adesibikan AA, Saliu OD (2023) Phytogenically bioengineered metal nanoarchitecture for degradation of refractory dye water pollutants: a pragmatic minireview. Appl Organomet Chem 37(2):e6946

    Article  Google Scholar 

  5. Emmanuel SS et al (2023) Greenly biosynthesized bimetallic nanoparticles for ecofriendly degradation of notorious dye pollutants: a review. Plant Nano Biol 3:100024

    Article  Google Scholar 

  6. Subhan MA et al (2015) Photoluminescence, photocatalytic and antibacterial activities of CeO2ĚCuOĚZnO nanocomposite fabricated by co-precipitation method. Spectrochim Acta A Mol Biomol Spectrosc 149:839–850

    Article  Google Scholar 

  7. Kannan K et al (2022) Facile fabrication of novel ceria-based nanocomposite (CYO-CSO) via co-precipitation: electrochemical, photocatalytic and antibacterial performances. J Mol Struct 1256:132519

    Article  Google Scholar 

  8. Sobhani A, Alinavaz S (2023) Co-precipitation synthesis of CuMn2O4/CuMnO nanocomposites without capping agent and investigation of their applications for removing pollutants from wastewater. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-03732-2

  9. Akbarzadeh S et al (2022) Improvement of the corrosion performance of AA2024 alloy by a duplex PEO/clay modified sol-gel nanocomposite coating. Surf Coat Technol 434:128168

    Article  Google Scholar 

  10. El Gaidoumi A et al (2022) Efficient sol-gel nanocomposite TiO2-clay in photodegradation of phenol: comparison to Labe-made and commercial photocatalysts. Silicon 14(10):5401–5414

    Article  Google Scholar 

  11. Surekha P et al (2022) Optical applications of sol-gel nano-composites. Mater Today Proc 62:2034–2037

    Article  Google Scholar 

  12. Nandagudi A et al (2022) Hydrothermal synthesis of transition metal oxides, transition metal oxide/carbonaceous material nanocomposites for supercapacitor applications. Mater Today Sustain 19:100214

    Article  Google Scholar 

  13. Shu Z et al (2022) A strategy to synthesize highly luminescent GdVO4: Eu3+/CDs nanocomposite based on hydrothermal deposition method and its application in anti-counterfeiting. J Alloys Compd 919:165881

    Article  Google Scholar 

  14. Kaur A et al (2023) Nanocomposites of ferrites with TiO2, SiO2 and carbon quantum dots as photocatalysts for degradation of organic pollutants and microbes. Magnetochemistry 9(5):127

    Article  Google Scholar 

  15. Yontar AK, Çevik S (2024) Electrospray deposited plant-based polymer nanocomposite coatings with enhanced antibacterial activity for Ti-6Al-4V implants. Prog Org Coat 186:107965

    Article  Google Scholar 

  16. Yontar AK, Çevik S, Yontar O (2023) Green production of plant/collagen-based antibacterial polyvinyl alcohol (PVA) nanocomposite films. Sustain Chem Pharm 33:101119

    Article  Google Scholar 

  17. Jakinala P et al (2023) Green synthesis of ZnO-Ag nanocomposite using Stenotaphrum secundatum grass extract: antibacterial activity and anticancer effect in oral squamous cell carcinoma CAL 27 cells. Inorg Chem Commun 152:110735

    Article  Google Scholar 

  18. Chouhan RS et al (2023) Green synthesis of a magnetite/graphitic carbon nitride 2D nanocomposite for efficient Hg2+ remediation. Environ Sci Nano 10:2658–2671

  19. Yontar AK, Çevik S (2023) Effects of plant extracts and green-synthesized silver nanoparticles on the polyvinyl alcohol (PVA) nanocomposite films. Arab J Sci Eng 48(9):12043–12060

    Article  Google Scholar 

  20. Yontar AK, Avcioğlu S, Çevik S (2022) Nature-based nanocomposites for adsorption and visible light photocatalytic degradation of methylene blue dye. J Clean Prod 380:135070

    Article  Google Scholar 

  21. Obayomi KS et al (2023) Green synthesis of graphene-oxide based nanocomposites for efficient removal of methylene blue dye from wastewater. Desalination 564:116749

  22. Amaku JF, Martincigh BS (2022) Synthesis and characterization of nanocomposites containing silver nanoparticle – decorated multiwalled carbon nanotubes for water disinfection. Waste Biomass Valori 13(1):149–172

    Article  Google Scholar 

  23. Dousari AS et al (2023) Mentha pulegium as a source of green synthesis of nanoparticles with antibacterial, antifungal, anticancer, and antioxidant applications. Sci Hortic 320:112215

    Article  Google Scholar 

  24. Ash M, Ash I (2009) Industrial chemical thesaurus. VCH Publishers, New York

  25. Shahmohamadi R et al (2014) Antioxidant activity of gilan Mentha pulegium during growth. Pak J Biol Sci 17(3):380–387

    Article  Google Scholar 

  26. Harley RM et al (2004) Labiatae. In: Flowering plants· Dicotyledons: Lamiales (except Acanthaceae including Avicenniaceae). Springer, pp 167–275

    Chapter  Google Scholar 

  27. Karousou R et al (2007) “Mints”, smells and traditional uses in Thessaloniki (Greece) and other Mediterranean countries. J Ethnopharmacol 109(2):248–257

    Article  Google Scholar 

  28. Aghel N et al (2004) Supercritical carbon dioxide extraction of Mentha pulegium L. essential oil. Talanta 62(2):407–411

    Article  Google Scholar 

  29. Debbab A et al (2009) Bioactive metabolites from the endophytic fungus Stemphylium globuliferum isolated from Mentha pulegium. J Nat Prod 72(4):626–631

    Article  Google Scholar 

  30. Chalchat J-C et al (2000) Essential oil of wild growing Mentha pulegium L. from Yugoslavia. J Essent Oil Res 12(5):598–600

    Article  Google Scholar 

  31. Darvishi E et al (2014) Optimization of callus induction in Pennyroyal (Mentha pulegium). J Appl Biotechnol Rep 1(3):97–100

    Google Scholar 

  32. Hassanpour H et al (2013) Penconazole induced changes in photosynthesis, ion acquisition and protein profile of Mentha pulegium L. under drought stress. Physiol Mol Biol Plants 19(4):489–498

    Article  MathSciNet  Google Scholar 

  33. Khadraoui A et al (2014) Mentha pulegium extract as a natural product for the inhibition of corrosion. Part I: electrochemical studies. Nat Prod Res 28(15):1206–1209

    Article  Google Scholar 

  34. Miraj S, Kiani S (2016) Study of pharmacological effect of Mentha pulegium: a review. Pharm Lett 8(9):242–245

    Google Scholar 

  35. Nickavar B, Jabbareh F (2018) Analysis of the essential oil from Mentha pulegium and identification of its antioxidant constituents. J Essent Oil-Bear Plants 21(1):223–229

    Article  Google Scholar 

  36. Caputo L et al (2021) Mentha pulegium L.: a plant underestimated for its toxicity to be recovered from the perspective of the circular economy. Molecules 26(8):2154

    Article  Google Scholar 

  37. Anandalakshmi K, Venugobal J, Ramasamy V (2016) Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci 6(3):399–408

    Article  Google Scholar 

  38. Bouafia A, Laouini SE (2020) Green synthesis of iron oxide nanoparticles by aqueous leaves extract of Mentha pulegium L.: effect of ferric chloride concentration on the type of product. Mater Lett 265:127364

    Article  Google Scholar 

  39. Oves M et al (2022) Green synthesis of silver nanoparticles by Conocarpus lancifolius plant extract and their antimicrobial and anticancer activities. Saudi J Biol Sci 29(1):460–471

    Article  Google Scholar 

  40. Kir I, Laouini SE, Meneceur S, Bouafia A, Mohammed HAM (2023) Biosynthesis and characterization of novel nanocomposite ZnO/BaMg2 efficiency for high-speed adsorption of AZO dye. Biomass Conv Bioref. https://doi.org/10.1007/s13399-023-03985-5

  41. Uribe E et al (2016) Assessment of vacuum-dried peppermint (Mentha piperita L.) as a source of natural antioxidants. Food Chem 190:559–565

    Article  Google Scholar 

  42. Masłowski M et al (2021) Potential application of peppermint (Mentha piperita L.), german chamomile (Matricaria chamomilla L.) and yarrow (Achillea millefolium L.) as active fillers in natural rubber biocomposites. Int J Mol Sci 22(14):7530

    Article  Google Scholar 

  43. Jurić T et al (2021) The evaluation of phenolic content, in vitro antioxidant and antibacterial activity of Mentha piperita extracts obtained by natural deep eutectic solvents. Food Chem 362:130226

    Article  Google Scholar 

  44. Cornara L et al (2022) Pedoclimatic conditions influence the morphological, phytochemical and biological features of Mentha pulegium L. Plants 12(1):24

    Article  Google Scholar 

  45. Belkacem N, Azzi R, Djaziri R (2022) Phytochemical screening, total phenolics contents and in vitro antioxidant activity of Salvia officinalis, Satureja calamintha. Mentha pulegium and Marrubium vulgare Phytothérapie 20(1):23–28

    Article  Google Scholar 

  46. Jebali J et al (2022) Tunisian native Mentha pulegium L. extracts: phytochemical composition and biological activities. Molecules 27(1):314

    Article  Google Scholar 

  47. Aires A et al (2016) Phytochemical composition and antibacterial activity of hydroalcoholic extracts of Pterospartum tridentatum and Mentha pulegium against Staphylococcus aureus isolates. Biomed Res Int 2016:5201879

    Article  Google Scholar 

  48. Barhoum A et al (2018) Chapter 20 - Recent trends in nanostructured particles: synthesis, functionalization, and applications. In: Barhoum A, Makhlouf ASH (eds) Fundamentals of nanoparticles. Elsevier, pp 605–639

    Chapter  Google Scholar 

  49. Strehlow W, Cook EL (1973) Compilation of energy band gaps in elemental and binary compound semiconductors and insulators. J Phys Chem Ref Data 2(1):163–200

    Article  Google Scholar 

  50. Jayaprakash P, Mohamed MP, Caroline ML (2017) Growth, spectral and optical characterization of a novel nonlinear optical organic material: d-Alanine dl-Mandelic acid single crystal. J Mol Struct 1134:67–77

    Article  Google Scholar 

  51. Mallick P, Dash B (2013) X-ray diffraction and UV-visible characterizations of α-Fe2O3 nanoparticles annealed at different temperature. Nanosci Nanotechnol 3(5):130–134

    Google Scholar 

  52. Yang Y et al (2016) Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction. Sci Rep 6(1):1–13

    MathSciNet  Google Scholar 

  53. Khan I et al (2011) Bandgap engineering of Cd1−xSrxO. Phys B Condens Matter 406(13):2509–2514

    Article  Google Scholar 

  54. Kalia R et al (2022) Photocatalytic degradation properties of Li-Cr ions substituted CoFe2O4 nanoparticles for wastewater treatment application. Phys Status Solidi A 219(8):2100539

    Article  Google Scholar 

  55. Neamen D (2003) Semiconductors physics and devices basic principles, 3rd edn. McGraw Hill Companies, New York

  56. Jacoboni C, Jacoboni C (2010) Semiconductors. Springer

    MATH  Google Scholar 

  57. Abdel-Baki M, El-Diasty F, Wahab FAA (2006) Optical characterization of xTiO2–(60− x) SiO2–40Na2O glasses: II. Absorption edge, Fermi level, electronic polarizability and optical basicity. Opt Commun 261(1):65–70

    Article  Google Scholar 

  58. Urbach F (1953) The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev 92(5):1324

    Article  Google Scholar 

  59. Bouafia A et al (2022) Green biosynthesis and physicochemical characterization of Fe3O4 nanoparticles using Punica granatum L. fruit peel extract for optoelectronic applications. Text Res J 92(15-16):2685–2696

    Article  Google Scholar 

  60. Archana KJ, Preetha AC, Balasubramanian K (2022) Influence of Urbach energy in enhanced photocatalytic activity of Cu doped ZnO nanoparticles. Opt Mater 127:112245

    Article  Google Scholar 

  61. Akshay V et al (2019) Visible range optical absorption, Urbach energy estimation and paramagnetic response in Cr-doped TiO 2 nanocrystals derived by a sol–gel method. Phys Chem Chem Phys 21(24):12991–13004

    Article  Google Scholar 

  62. Choudhury B, Choudhury A (2014) Oxygen defect dependent variation of band gap, Urbach energy and luminescence property of anatase, anatase–rutile mixed phase and of rutile phases of TiO2 nanoparticles. Physica E Low Dimens Syst Nanostruct 56:364–371

    Article  Google Scholar 

  63. Kabir MH et al (2021) Effect of Sr doping on structural, morphological, optical and electrical properties of spray pyrolized CdO thin films. J Mater Sci Mater Electron 32(3):3834–3842

    Article  Google Scholar 

  64. Dhanaraj A, Das K, Keller J (2020) A study of the optical band gap energy and Urbach energy of fullerene (C60) doped PMMA nanocomposites. In: AIP Conference Proceedings. AIP Publishing

    Google Scholar 

  65. Djamila B et al (2022) In vitro antioxidant activities of copper mixed oxide (CuO/Cu2O) nanoparticles produced from the leaves of Phoenix dactylifera L. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-02743-3

  66. Hassanien AS, Akl AA (2018) Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures. Appl Phys A 124(11):1–16

    Article  Google Scholar 

  67. Abdullah JAA et al (2020) Green synthesis and characterization of iron oxide nanoparticles by pheonix dactylifera leaf extract and evaluation of their antioxidant activity. Sustain Chem Pharm 17:100280

    Article  Google Scholar 

  68. Bin Mobarak M et al (2022) Synthesis and characterization of CuO nanoparticles utilizing waste fish scale and exploitation of XRD peak profile analysis for approximating the structural parameters. Arab J Chem 15(10):104117

    Article  Google Scholar 

  69. Lanje AS et al (2010) Synthesis and optical characterization of copper oxide nanoparticles. Adv Appl Sci Res 1(2):36–40

    Google Scholar 

  70. Jabli M (2023) Preparation of alkali lignin extracted from ligno-cellulosic populus tremula fibers: application to copper oxide nanoparticles synthesis, characterization, and methylene blue biosorption study. Int J Biol Macromol 226:956–964

    Article  Google Scholar 

  71. Kumar P et al (2023) Photodegradation of methyl orange dye by using Azadirachta indica and chemically mediated synthesized cobalt doped α-Fe2O3 NPs through co-precipitation method. Materials Today: Proceedings

  72. Klug, H.P. and L.E. Alexander, X-ray diffraction procedures: for polycrystalline and amorphous materials. 1974.

    Google Scholar 

  73. Gawade VV et al (2017) Green synthesis of ZnO nanoparticles by using Calotropis procera leaves for the photodegradation of methyl orange. J Mater Sci Mater Electron 28(18):14033–14039

    Article  Google Scholar 

  74. Blaskov V et al (2017) The pho-todegradation of methylene blue and methyl orange dyes and their mixture by ZnO obtained by hydrothermally activated precipitates. Bulg Chem Commun 49:183–187

    Google Scholar 

  75. Madima N et al (2022) TiO2-modified g-C3N4 nanocomposite for photocatalytic degradation of organic dyes in aqueous solution. Heliyon 8(9)

  76. Panchal P et al (2020) Biogenic mediated Ag/ZnO nanocomposites for photocatalytic and antibacterial activities towards disinfection of water. J Colloid Interface Sci 563:370–380

    Article  Google Scholar 

  77. Abu-Dief AM et al (2021) Facile synthesis and characterization of novel Gd2O3–CdO binary mixed oxide nanocomposites of highly photocatalytic activity for wastewater remediation under solar illumination. J Phys Chem Solids 148:109666

    Article  Google Scholar 

  78. Hashemi E, Poursalehi R, Delavari H (2022) Structural, optical and photocatalytic activity of multi-heterojunction Bi2O3/Bi2O2CO3/(BiO) 4CO3 (OH) 2 nanoflakes synthesized via submerged DC electrical discharge in urea solution. Nanoscale Res Lett 17(1):75

    Article  Google Scholar 

  79. Alahmadi M et al (2023) Development of Bi2O3/MoSe2 mixed nanostructures for photocatalytic degradation of methylene blue dye. J Taibah Univ Sci 17(1):2161333

    Article  Google Scholar 

  80. Wali LA et al (2019) Excellent fabrication of Pd-Ag NPs/PSi photocatalyst based on bimetallic nanoparticles for improving methylene blue photocatalytic degradation. Optik 179:708–717

    Article  Google Scholar 

  81. Wojnarowicz J, Chudoba T, Lojkowski W (2020) A review of microwave synthesis of zinc oxide nanomaterials: reactants, process parameters and morphologies. Nanomaterials 10(6):1086

    Article  Google Scholar 

  82. Kumar CR et al (2020) One-pot green synthesis of ZnO–CuO nanocomposite and their enhanced photocatalytic and antibacterial activity. Adv Nat Sci Nanosci Nanotechnol 11(1):015009

    Article  Google Scholar 

  83. Hu H et al (2018) Satellite-like CdS nanoparticles anchoring onto porous NiO nanoplates for enhanced visible-light photocatalytic properties. Mater Lett 224:75–77

    Article  Google Scholar 

  84. Emmanuel SS et al (2023) A pragmatic review on bio-polymerized metallic nano-architecture for photocatalytic degradation of recalcitrant dye pollutants. J Polym Environ 24:1–30

  85. Emmanuel SS et al (2023) A pragmatic review on photocatalytic degradation of methyl orange dye pollutant using greenly biofunctionalized nanometallic materials: a focus on aquatic body. Appl Organomet Chem 37(7):e7108

    Article  Google Scholar 

  86. Emmanuel SS, Adesibikan AA (2021) Bio-fabricated green silver nano-architecture for degradation of methylene blue water contaminant: a mini-review. Water Environ Res 93(12):2873–2882

    Article  Google Scholar 

  87. Emmanuel SS et al (2023) Emerging nanosemiconductors for photocatalytic degradation of mono-aromatic volatile organic compounds (BTEX): a pragmatic review. J Organomet Chem 996:122767

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MB.G, S.L; methodology: MB.G, S.Z, and D.H; investigation: MB.G, Z.M; resources: MB.G, Z.M, and D.H; data curation: MB.G and SE.B; writing—original draft preparation: MB.G, S.Z, Z.M, and SE.B; writing—review and editing: MB.G, S.Z, Z.M, and SE.B; supervision: S.L; project administration: MB.G; all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mohamed Bilal Goudjil.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goudjil, M.B., Dali, H., Zighmi, S. et al. Successive photocatalytic degradation of methylene blue by CuO, Fe2O3, and novel nanocomposite CuO/Fe2O3 synthesized from Mentha pulegium plant extract via biosynthesis technique. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-05041-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-05041-8

Keywords

Navigation