Skip to main content
Log in

Synthesis, characterization, and antibacterial activity of amino-functionalized microcrystalline cellulose derivatives from cotton fibers

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This study aims to develop a green and efficient method for synthesizing antimicrobial amino-functionalized microcrystalline celluloses from cotton fibers. Microcrystalline cellulose was prepared by acid hydrolyzing of cellulose. Tosyl cellulose was synthesized by tosylation of cellulose in an eco-friendly medium using NaOH/urea and decyl glucoside surfactant with DSTs of 0.51. Three amino-functionalized cellulose derivatives were synthesized by nucleophilic substitution reaction of tosyl cellulose with 3-aminopropyltrimethoylsilane, ethylenediamine, and triethylenetetramine. The physicochemical properties of investigated celluloses were characterized by Fourier transform infrared spectroscopy, X-ray diffraction analysis, scanning electron microscopy, and thermogravimetric analysis-differential scanning calorimetry. Microcrystalline cellulose with high crystallinity index (81.90%) and crystalline size of 0.30 nm was isolated from cotton fibers. After the dissolution and chemical modification, the crystalline form of cellulose was transformed from cellulose I to amorphous cellulose II. The thermal degradation of aminated cellulose was around 260 °C. The amino cellulose exhibited high inhibition activity against S. aureus, P. aeruginosa, and E. coli with MIC values less than 5 mg mL–1. The chemical modification of surface cellulose could deliver antimicrobial cellulosic materials with potential applications for air and water treatments or as ingredients in the food, cosmetic, and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Sperandeo P, Bosco F, Clerici F, Polissi A, Gelmi ML, Romanelli A (2020) Covalent grafting of antimicrobial peptides onto microcrystalline cellulose. ACS Appl Bio Mater 3:4895–4901. https://doi.org/10.1021/acsabm.0c00412

    Article  Google Scholar 

  2. Tavakolian M, Jafari SM, van de Ven TGM (2020) A review on surface-functionalized cellulosic nanostructures as biocompatible antibacterial materials. Nano-Micro Lett 12:1–23. https://doi.org/10.1007/s40820-020-0408-4

    Article  Google Scholar 

  3. Ullah H, Wahid F, Santos HA, Khan T (2016) Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr Polym 150:330–352. https://doi.org/10.1016/j.carbpol.2016.05.029

  4. Hong L, Wang YL, Jia SR, Huang Y, Gao C, Wan YZ (2006) Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route. Mater Lett 60:1710–1713. https://doi.org/10.1016/j.matlet.2005.12.004

    Article  Google Scholar 

  5. El-Sayed NS, El-Sakhawy M, Brun N, Hesemann P, Kamel S (2018) New approach for immobilization of 3-aminopropyltrimethoxysilane and TiO2 nanoparticles into cellulose for BJ1 skin cells proliferation. Carbohydr Polym 199:193–204. https://doi.org/10.1016/j.carbpol.2018.07.004

  6. Haldar D, Purkait MK (2020) Micro and nanocrystalline cellulose derivatives of lignocellulosic biomass: a review on synthesis, applications and advancements. Carbohydr Polym 250:116937. https://doi.org/10.1016/j.carbpol.2020.116937

    Article  Google Scholar 

  7. Trache D, Hussin MH, Hui Chuin CT, Sabar S, Fazita MRN, Taiwo OFA, Hassan TM, Haafiz MKM (2016) Microcrystalline cellulose: isolation, characterization and bio-composites application—a review. Int J Biol Macromol 93:789–804. https://doi.org/10.1016/j.ijbiomac.2016.09.056

  8. Shi S, Zhang M, Ling C, Hou W, Yan Z (2018) Extraction and characterization of microcrystalline cellulose from waste cotton fabrics via hydrothermal method. Waste Manag 82:139–146. https://doi.org/10.1016/j.wasman.2018.10.023

    Article  Google Scholar 

  9. D.D. Fang, Cotton fiber: physics, chemistry and biology, 2018. https://doi.org/10.1007/978-3-030-00871-0.

  10. Fu F, Li L, Liu L, Cai J, Zhang Y, Zhou J, Zhang L (2015) Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation. ACS Appl Mater Interfaces 7:2597–2606. https://doi.org/10.1021/am507639b

    Article  Google Scholar 

  11. Singla R, Soni S, Patial V, Kulurkar PM, Kumari A, Mahesh S, Padwad YS, Yadav SK (2017) Cytocompatible anti-microbial dressings of syzygium cumini cellulose nanocrystals decorated with silver nanoparticles accelerate acute and diabetic wound healing. Sci Rep 7:1–13. https://doi.org/10.1038/s41598-017-08897-9

    Article  Google Scholar 

  12. Rieger KA, Cho HJ, Yeung HF, Fan W, Schiffman JD (2016) Antimicrobial activity of silver ions released from zeolites immobilized on cellulose nanofiber mats. ACS Appl Mater Interfaces 8:3032–3040. https://doi.org/10.1021/acsami.5b10130

    Article  Google Scholar 

  13. Li W, Li X, Wang Q, Pan Y, Wang T, Wang H, Song R, Deng H (2014) Antibacterial activity of nanofibrous mats coated with lysozyme-layered silicate composites via electrospraying. Carbohydr Polym 99:218–225. https://doi.org/10.1016/j.carbpol.2013.07.055

    Article  Google Scholar 

  14. Zhu K, Ye T, Liu J, Peng Z, Xu S, Lei J, Deng H, Li B (2013) Nanogels fabricated by lysozyme and sodium carboxymethyl cellulose for 5-fluorouracil controlled release. Int J Pharm 441:721–727. https://doi.org/10.1016/j.ijpharm.2012.10.022

    Article  Google Scholar 

  15. He L, Liang H, Lin L, Shah BR, Li Y, Chen Y, Li B (2015) Green-step assembly of low density lipoprotein/sodium carboxymethyl cellulose nanogels for facile loading and pH-dependent release of doxorubicin. Colloids Surfaces B Biointerfaces 126:288–296. https://doi.org/10.1016/j.colsurfb.2014.12.024

    Article  Google Scholar 

  16. Sobhana SSL, Bogati DR, Reza M, Gustafsson J, Fardim P (2016) Cellulose biotemplates for layered double hydroxides networks. Microporous Mesoporous Mater 225:66–73. https://doi.org/10.1016/j.micromeso.2015.12.009

    Article  Google Scholar 

  17. Feese E, Sadeghifar H, Gracz HS, Argyropoulos DS, Ghiladi RA (2011) Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization, and antimicrobial properties. Biomacromolecules 12(10):3528–3539. https://doi.org/10.1021/bm200718s

  18. Fernandes SCM, Sadocco P, Alonso-Varona A, Palomares T, Eceiza A, Silvestre AJD, Mondragon I, Freire CSR (2013) Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces 5:3290–3297. https://doi.org/10.1021/am400338n

    Article  Google Scholar 

  19. Maimaiti H, Awati A, Yisilamu G, Zhang D, Wang S (2019) Synthesis and visible-light photocatalytic CO 2 /H 2 O reduction to methyl formate of TiO 2 nanoparticles coated by aminated cellulose. Appl Surf Sci 466:535–544. https://doi.org/10.1016/j.apsusc.2018.10.070

    Article  Google Scholar 

  20. Saini S, Belgacem N, Mendes J, Elegir G, Bras J (2015) Contact antimicrobial surface obtained by chemical grafting of microfibrillated cellulose in aqueous solution limiting antibiotic release. ACS Appl Mater Interfaces 7:1–27. https://doi.org/10.1021/acsami.5b04938

    Article  Google Scholar 

  21. Heinze T, Rahn K (1997) Cellulose-p-toluenesulfonates: a valuable intermediate in cellulose chemistry. Macromol Symp 120:103–113. https://doi.org/10.1002/masy.19971200112

    Article  Google Scholar 

  22. Schmidt S, Liebert T, Heinze T (2014) Synthesis of soluble cellulose tosylates in an eco-friendly medium. Green Chem 16:1941–1946. https://doi.org/10.1039/c3gc41994k

    Article  Google Scholar 

  23. Heinze T, Genco T, Petzold-Welcke K, Wondraczek H (2012) Synthesis and characterization of aminocellulose sulfates as novel ampholytic polymers. Cellulose 19:1305–1313. https://doi.org/10.1007/s10570-012-9725-1

    Article  Google Scholar 

  24. EL-Sayed NS, El-Ziaty AK, El-Meligy MG, Nagieb ZA (2017) Syntheses of new antimicrobial cellulose materials based 2-((2-aminoethyl)amino)-4-aryl-6-indolylnicotinonitriles. Egypt J Chem 60:465–477. https://doi.org/10.21608/ejchem.2017.3375

  25. Nazir F, Iqbal M (2020) Synthesis, characterization and cytotoxicity studies of aminated microcrystalline cellulose derivatives against melanoma and breast cancer cell lines. Polymers (Basel) 12:1–20. https://doi.org/10.3390/polym12112634

    Article  Google Scholar 

  26. Elchinger PH, Faugeras PA, Zerrouki C, Montplaisir D, Brouillette F, Zerrouki R (2012) Tosylcellulose synthesis in aqueous medium. Green Chem 14:3126–3131. https://doi.org/10.1039/c2gc35592b

    Article  Google Scholar 

  27. Gericke M, Schaller J, Liebert T, Fardim P, Meister F, Heinze T (2012) Studies on the tosylation of cellulose in mixtures of ionic liquids and a co-solvent. Carbohydr Polym 89:526–536. https://doi.org/10.1016/j.carbpol.2012.03.040

    Article  Google Scholar 

  28. Tarchoun AF, Trache D, Klapötke TM, Derradji M, Bessa W (2019) Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media. Cellulose 26:7635–7651. https://doi.org/10.1007/s10570-019-02672-x

    Article  Google Scholar 

  29. Tarchoun AF, Trache D, Klapötke TM, Krumm B, Mezroua A, Derradji M, Bessa W (2021) Design and characterization of new advanced energetic biopolymers based on surface functionalized cellulosic materials. Cellulose 0123456789:6107–6123. https://doi.org/10.1007/s10570-021-03965-w

    Article  Google Scholar 

  30. Tarchoun AF, Trache D, Klapötke TM, Belmerabet M, Abdelaziz A, Derradji M, Belgacemi R (2020) Synthesis, characterization, and thermal decomposition kinetics of nitrogen-rich energetic biopolymers from aminated giant reed cellulosic fibers. Ind Eng Chem Res 59:22677–22689. https://doi.org/10.1021/acs.iecr.0c05448

    Article  Google Scholar 

  31. Tarchoun AF, Trache D, Klapötke TM, Krumm B (2020) New insensitive nitrogen-rich energetic polymers based on amino-functionalized cellulose and microcrystalline cellulose: synthesis and characterization. Fuel 277:118258. https://doi.org/10.1016/j.fuel.2020.118258

    Article  Google Scholar 

  32. Rashid M, Gafur MA, Sharafat MK, Minami H, Miah MAJ, Ahmad H (2017) Biocompatible microcrystalline cellulose particles from cotton wool and magnetization via a simple in situ co-precipitation method. Carbohydr Polym 170:72–79. https://doi.org/10.1016/j.carbpol.2017.04.059

    Article  Google Scholar 

  33. El-Sayed NS, El-Sakhawy M, Hesemann P, Brun N, Kamel S (2018) Rational design of novel water-soluble ampholytic cellulose derivatives. Int J Biol Macromol 114:363–372. https://doi.org/10.1016/j.ijbiomac.2018.03.147

    Article  Google Scholar 

  34. Zhang L, Yan P, Li Y, He X, Dai Y, Tan Z (2020) Preparation and antibacterial activity of a cellulose-based Schiff base derived from dialdehyde cellulose and L-lysine. Ind Crops Prod 145:112126. https://doi.org/10.1016/j.indcrop.2020.112126

    Article  Google Scholar 

  35. Trask BJ, Drake GL, Margavio MF, Drake GL Jr, Margavio MF (1987) Thermal properties of tritylated and tosylated cellulose. J Appl Polym Sci 33:2317–2331. https://doi.org/10.1002/app.1987.070330705

    Article  Google Scholar 

  36. El Hamdaoui L, Talbaoui A, El Moussaouiti M (2021) Nucleophilic displacement reaction on tosyl cellulose by L-methionine to the synthesis of novel water-soluble cellulose derivative and its antibacterial activity. Int J Polym Sci 2021:6613684. https://doi.org/10.1155/2021/6613684

  37. Zhang L, Ge H, Xu M, Cao J, Dai Y (2017) Physicochemical properties, antioxidant and antibacterial activities of dialdehyde microcrystalline cellulose. Cellulose 24:2287–2298. https://doi.org/10.1007/s10570-017-1255-4

    Article  Google Scholar 

  38. Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromol 4:1457–1465. https://doi.org/10.1021/bm034130m

    Article  Google Scholar 

  39. Hu L, Meng X, Xing R, Liu S, Chen X, Qin Y, Yu H, Li P (2016) Design, synthesis and antimicrobial activity of 6-N-substituted chitosan derivatives, Bioorganic Med. Chem Lett 26:4548–4551. https://doi.org/10.1016/j.bmcl.2015.08.047

    Article  Google Scholar 

  40. Mohamed NA, El-Ghany NAA, Fahmy MM (2016) Novel antimicrobial superporous cross-linked chitosan/pyromellitimide benzoyl thiourea hydrogels. Int J Biol Macromol 82:589–598. https://doi.org/10.1016/j.ijbiomac.2015.09.023

    Article  Google Scholar 

  41. Lin L, Gu Y, Li C, Vittayapadung S, Cui H (2018) Antibacterial mechanism of ε-Poly-lysine against Listeria monocytogenes and its application on cheese. Food Control 91:76–84. https://doi.org/10.1016/j.foodcont.2018.03.025

    Article  Google Scholar 

  42. Bo T, Han PP, Su QZ, Fu P, Guo FZ, Zheng ZX, Tan ZL, Zhong C, Jia SR (2016) Antimicrobial ε-poly-l-lysine induced changes in cell membrane compositions and properties of Saccharomyces cerevisiae. Food Control 61:123–134. https://doi.org/10.1016/j.foodcont.2015.09.018

  43. Shih IL, Shen MH, Van YT (2006) Microbial synthesis of poly(ε-lysine) and its various applications. Bioresour Technol 97:1148–1159. https://doi.org/10.1016/j.biortech.2004.08.012

    Article  Google Scholar 

Download references

Funding

This research is funded by the Graduate University of Science and Technology under grant number GUST.STS.ĐT2018-HH03.

Author information

Authors and Affiliations

Authors

Contributions

Minh Huy Do: investigation and writing—orginal draft. Thi Khanh Van Khuat: writing—review and editing and supervison. Phuong Thanh Huynh: investigation. Luu Nhat Tan Nguyen: investigation. Bich Hang Do: investigation and writing—review and editing. Phuoc Dien Pham: validation and writing—review and editing. Dinh Hiep Nguyen: writing—review and editing. Hien Minh Nguyen: writing—review and editing. Ut Dong Thach: conceptualization, writing—orginal draft, methodology, and funding acquisition.

Corresponding author

Correspondence to Ut Dong Thach.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12250 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, M.H., Van Thi Khuat, K., Huynh, P.T. et al. Synthesis, characterization, and antibacterial activity of amino-functionalized microcrystalline cellulose derivatives from cotton fibers. Biomass Conv. Bioref. 13, 10595–10603 (2023). https://doi.org/10.1007/s13399-022-02391-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02391-7

Keywords

Navigation