Skip to main content
Log in

Algal biomass nanoparticles: chemical characteristics, biological actions, and applications

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Synthesis of metallic nanoparticles (MNPs) with different forms and sizes has focused great importance due to their updated characteristics as compared to their native or natural atom counterparts. Algae are one of the most common biological entities existing autotrophically, performing around 50% of photosynthesis in the world. Different micro- and macroalgae are rich in active ingredients which are considered an appealing platform to serve as biorefineries for contriving a wide spectrum of high-value products in addition to fuels, besides their role as antioxidant, anticancer, antimicrobial, and bioaccumulators of heavy metals. Various preparation factors and parameters such as the methods used for green nanoparticle (NP) synthesis, algal extract or filtrate concentrations, pressure, pH, temperatures, contact time, particle size, other environmental conditions, and proximity greatly affect the quantity and quality of the biosynthesized NPs and their properties from algal species. The data collected from recently published articles revealed that algae (micro or macro) are an alternative material for the synthesis of NPs due to their advantages of fast growth (short life cycle), low cost, and short time for collection and harvesting, in addition to the presence of various reducing, capping, and stabilizing agents in the algal filtrate or extract which may be used to convert metal ions to nano forms such as polysaccharides, phenolics, proteins, alkaloids, and terpenoids. Therefore, algae became the important organism for green synthesis of various NPs. The algal NPs can be used with a broad spectrum of biological activities and applications such as antioxidant, antiviral, antimicrobial, and cosmetics. The current review will focus on the green synthesis of NPs using different micro- and macroalgal species and factors affecting NP preparations in addition to the biological activities of the produced NPs as antioxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Abdel-Raouf N, Al-Enazi NM, Ibraheem NM (2013) Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arabian J. Chem. 10(2):23–29

    Google Scholar 

  2. Al-Ammari A, Zhang L, Yang J, Wei F, Chen C, Sun D (2021) Toxicity assessment of synthesized titanium dioxide nanoparticles in fresh water algae Chlorella pyrenoidosa and a zebrafish liver cell line. Ecotoxicol Environ Saf 211:111948

    Article  Google Scholar 

  3. Ali MD, Arunkumar J, Nag KH, SyedIshack SKA, Baldev E, Pandiaraj D, Thajuddin N (2013) Gold nanoparticles from Pro and eukaryotic photosynthetic microorganisms—comparative studies on synthesis and its application on biolabelling. Colloid Surfaces B 103:166–173

    Article  Google Scholar 

  4. AlNadhari S, Al-Enazi NM, Alshehrei F, Ameen F (2021) A review on biogenic synthesis of metal nanoparticles using marine algae and its applications. Environ Res 194:110672

    Article  Google Scholar 

  5. Alqadi MK, Abo Noqtah OA, Alzoubi FY, ALzouby J, ALJarrah K, (2014) pH effect on the aggregation of silver nanoparticles synthesized by chemical reduction. Mater Sci Pol 32(1):107–111

    Article  Google Scholar 

  6. Armendariz V, Herrera I, Peralta-Videa JR (2004) Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J. NP. Res. 6(4):377–382

    Google Scholar 

  7. Arya A, Mishra V, Chundawat TS (2019) Green synthesis of silver nanoparticles from green algae (Botryococcus braunii) and its catalytic behavior for the synthesis of benzimidazoles. Chem Data Collect 20:100190

    Article  Google Scholar 

  8. Azizi S, Ahmad MB, Namvar F, Mohamad R (2014) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett 116:275–277

    Article  Google Scholar 

  9. Bagherzade G, Tavakoli MM, Namaei MH (2017) Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pac J Trop Biomed 7:227–233

    Article  Google Scholar 

  10. Baker-Austin C, Wright M, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14:176–182

    Article  Google Scholar 

  11. Balakumaran MD, Ramachandran R, Kalaichelvan PT (2015) Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiol Res 178:9–17

    Article  Google Scholar 

  12. Barwal I, Ranjan P, Kateriya S, Yadav SC (2011) Cellular proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles oxido-reductive. J Nanobiotechnol 9:1–12

    Article  Google Scholar 

  13. Bilal M, Rasheed T, Sosa-Hernandez JE, Raza A, Nabeel F, Iqbal H (2018) Biosorption: an interplay between marine algae and potentially toxic elements—a review. Mar Drugs 16:65–81. https://doi.org/10.3390/md16020065

    Article  Google Scholar 

  14. Chick CN, Misawa-Suzuki T, Suzuki Y, Usuki T (2020) Preparation and antioxidant study of silver nanoparticles of Microsorum pteropus methanol extract. Bioorg Med Chem Lett 30:127526

    Article  Google Scholar 

  15. Danagoudar A, Pratap GK, Shantaram M, Ghosh K, Kanade SR, Joshi CG (2020) Characterization, cytotoxic and antioxidant potential of silver nanoparticles biosynthesised using endophytic fungus (Penicillium citrinum CGJ-C1). Materials Today Communications 25:101385

  16. Darroudi M, Ahmad MB, Zamiri R, Zak AK, Abdullah AH, Ibrahim NA (2011) Time-dependent effect in green synthesis of silver nanoparticles. Int. J. Nanomed. 6(1):677–681

    Article  Google Scholar 

  17. Devi JS, Bhimba BV (2012) Anticancer activity of silver nanoparticles synthesized by the seaweed Ulva lactuca invitro. Sci Rep 1:242

    Google Scholar 

  18. Devi JS, Bhimba BV, Peter DM (2013) Production of biogenic silver nanoparticles using Sargassum longifolium and its applications. Indian J Mar Sci 42:125–130

    Google Scholar 

  19. Dhanalakshmi PK, Azeez R, Rekha R, Poonkodi S, Nallamuthu T (2012) Synthesis of silver nano particles using green and brown seaweeds. Phykos 42:39–45

    Google Scholar 

  20. Dhas TS, Kumar VG, Karthick V, Angel KJ, Govindaraju K (2014) Facile synthesis of silver chloride nanoparticles using marine alga and its antibacterial efficacy. Spectrochim Acta A Mol Biomol Spectrosc 120:416–420

    Article  Google Scholar 

  21. El-fayoumy EA, Shanab SM, Gaballa HS, Tantawy MA, Shalaby EA (2021) Evaluation of antioxidant and anticancer activity of crude extracts and different fractions of Chlorella vulgaris axenic culture grown under various concentrations of copper ions. BMC Complement Med Ther 21(51):1–16

    Google Scholar 

  22. El-Sheekh MM, El-Kassas HY, Shams El-Din NG, Eissa DI, El-Sherbiny BA (2021) Green synthesis, characterization applications of iron oxide nanoparticles for antialgal and wastewater bioremediation using three brown algae. Int J Phytoremediation. 26:1–15. https://doi.org/10.1080/15226514.2021.1915957

    Article  Google Scholar 

  23. Fatima R, Priyaa M, Indurthi L, Radhakrishnanb V, Sudhakaran R (2020) Biosynthesis of silver nanoparticles using red alga Portieria hornemannii and its antibacterial activity against fish pathogens. Microb. Path. 138:103780

    Article  Google Scholar 

  24. Gardea-Torresdey JL, Tiemann KJ, Gamez G, Dokken K, Pingitore NE (1999) Recovery of gold (III) by alfalfa biomass and binding characterization using X-ray microfluorescence. Adv Environ Res 3(1):83–93

    Google Scholar 

  25. González-Ballesteros N, Prado-López S, Rodríguez-González JB, Lastra M, Rodríguez-Argüelles MC (2017) Green synthesis of gold nanoparticles using brown alga Cystoseira baccata its activity in colon cancer cells. Colloids Surf B Biointerfaces 153:190–198

    Article  Google Scholar 

  26. Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci 43:5115–5122

    Article  Google Scholar 

  27. Govindaraju K, Kiruthiga V, Kumar VG, Singaravelu G (2009) Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum wightii Grevilli and their antibacterial effects. J Nanosci Nanotechnol 9:5497–5501

    Article  Google Scholar 

  28. Govindaraju K, Krishnamoorthy K, Alsagaby SA, Singaravelu G, Premanathan M (2015) Green synthesis of silver nanoparticles for selective toxicity towards cancer cells. IET Nanobiotechnol 9:325–330

    Article  Google Scholar 

  29. Haider MJ, Mehdi MS (2014) Study of morphology and zeta potential analyzer for the silver nanoparticles. Int J Sci Eng Res 5:381–385

    Google Scholar 

  30. Hamouda T, Myc A, Donovan B, Shih AY, Reuter JD, Baker JR (2001) Microbiol Release 156(1):1–7

    Article  Google Scholar 

  31. Hamouda RA, El-Mongy MA, Eid KF (2019) Comparative study between two red algae for biosynthesis silver nanoparticles capping by SDS: insights of characterization and antibacterial activity. Microb Path 129:224–232

    Article  Google Scholar 

  32. Hu X, Saravanakumar K, Jin T, Wang MH (2019) Mycosynthesis, characterization, anticancer and antibacterial activity of silver nanoparticles from endophytic fungus Talaromyces purpureogenus. Int J Nanomed 14:3427–3438. https://doi.org/10.2147/IJN.S200817

    Article  Google Scholar 

  33. Hulikere HH, Joshi CG (2019) Characterization, antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus-Cladosporium cladosporioides. Process Biochem 82:199–204

    Article  Google Scholar 

  34. Husain S, Sardar M, Fatma T (2015) Screening of cyanobacterial extracts for synthesis of silver nanoparticles. World J Microbiol Biotechnol 31:1279–1283

    Article  Google Scholar 

  35. Husain S, Afreen S, Yasin D, Afzal B, Fatma T (2019) Cyanobacteria as a bioreactor for synthesis of silver nanoparticles-an effect of different reaction conditions on the size of nanoparticles and their dye decolorization ability. J Microbiol Methods 162:77–82

    Article  Google Scholar 

  36. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    Article  Google Scholar 

  37. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385–406

    Google Scholar 

  38. Janakiramana S, Lakshmananb T, Chandranc V, Subramani L (2019) Comparative behavior of various nano additives in a DIESEL enginepowered by novelGarcinia gummi-guttabiodiesel. J Clean Prod 245:118940

  39. Jiang XC, Chen WM, Chen CY, Xiong SX, Yu AB (2011) Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach. Nanoscale Res Lett 6(1):32

    Article  Google Scholar 

  40. Kalabegishvili TL, Kirkesali EI, Rcheulishvili AN, Ginturi EN, Murusidze IG, Pataraya DT, Gurielidze MA, Tsertsvadze GI, Gabunia VN, Lomidze LG, Gvarjaladze DN (2012) Synthesis of gold nanoparticles by some strains of Arthrobacter genera. Proc Inst Mech Eng Part L J Mater Des Appl 7:1–7

    Google Scholar 

  41. Kathiravan T, Sundaramanickam A, Shanmugam N, Balasubramanian T (2015) Green synthesis of silver nanoparticles using marine algae Caulerpa racemose and their antibacterial activity against some human pathogens. Appl Nanosci 5(4):499–504

    Article  Google Scholar 

  42. Keeffe OE, Hughes H, Mcloughlin P, Sp T (2019) Antibacterial activity of seaweed extracts against plant pathogenic bacteria. J Bacteriol Mycol 6(3):1105

    Google Scholar 

  43. Khalifa KS, Hamouda RA, Hamza HA (2016) In vitro antitumor activity of silver nanoparticles biosynthesized by marine algae, Digest. J Nanomater Biostruct 11:213–221

    Google Scholar 

  44. Khan M, Ahmad F, Koivisto JT, Kellomaki M (2020) Green synthesis of controlled size gold and silver nanoparticles using antioxidant as capping and reducing agent. Colloid Interface Sci Commun 39:100322

    Article  Google Scholar 

  45. Khanna P, Kaur A, Goyal D (2019) Algae-based metallic nanoparticles: synthesis, characterization and applications. J Microbiol Meth 163:105656

    Article  Google Scholar 

  46. Kharat SN, Mendhulkar VD (2016) Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Mater Sci Eng C Mater Biol Appl 62:719–724. https://doi.org/10.1016/j.msec.2016.02.024

    Article  Google Scholar 

  47. Krishnan M, Sivanandham V, Hans-Uwe D, Murugaiah SG, Seeni P, Gopalan S, Rathinam AJ (2015) Antifouling assessments on biogenic nanoparticles: a field study from polluted offshore platform. Mar Pollut Bull 101:816–825

    Article  Google Scholar 

  48. Kumar A, Mandal S, Selvakannan PR, Parischa R, Mandale AB, Sastry M (2003) Langmuir 19:6277–6282

    Article  Google Scholar 

  49. Kumar P, Senthamilselvi S, Govindaraju M (2013) Seaweed-mediated biosynthesis of silver nanoparticles using Gracilaria corticate for its antifungal activity against Candida spp. Appl. Nanosci. 3:495–500

    Article  Google Scholar 

  50. Kumar PV, Shameem U, Kollu P, Kalyani RL, Pammi SVN (2015) Green synthesis of copper oxide nanoparticles using Aloe vera leaf extract and its antibacterial activity against fish bacterial pathogens. BioNano Sci 5:135–139

    Article  Google Scholar 

  51. Lee KD, Nagajyothi PC, Sreekanth TVM, Park S (2015) Eco-friendly synthesis of gold nanoparticles (AuNPs) using Inonotus obliquus and their antibacterial, antioxidant and cytotoxic activities. J Ind Eng Chem 26:67–72

    Article  Google Scholar 

  52. Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environ Sci Technol 40:6304–6309

    Article  Google Scholar 

  53. Lengke MF, Fleet ME, Southam G (2007) Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir 23:2694–2699

    Article  Google Scholar 

  54. Li X, Schirmer K, Bernard L, Sigg L, Pillai S, Behra R (2015) Silver nanoparticle toxicity and association with the alga Euglena gracilis. Environ Sci Nano 2:594–602

    Article  Google Scholar 

  55. Li Z, Mu Y, Peng C, Lavin MF, Shao H, Du Z (2021) Understanding the mechanisms of silica nanoparticles for nanomedicine. WIREs Nanomedicine and Nanobiotechnology 13(1):e1658

  56. Liu B, Xie J, Lee JY, Ting YP, Chen JP (2005) Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. J Phys Chem B 109:15256–15263

    Article  Google Scholar 

  57. Liu Z, Gao T, Yang Y, Meng F, Zhan F, Jiang Q, Sun X (2019) Anti-cancer activity of porphyran and carrageenan from red seaweeds. Molecules 24(4286):1–14

    Google Scholar 

  58. Liu H, Zhang H, Wang J, Wei J (2020) Effect of temperature on the size of biosynthesized silver nanoparticle: deep insight into microscopic kinetics analysis. Arab J Chem 13(1):1011–1019

    Article  Google Scholar 

  59. Logeswari P, Silambarasan S, Abraham J (2013) Ecofriendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties. Sci Iran 20:1049–1054

    Google Scholar 

  60. Loo SC, Moore T, Banik B, Alexis F (2010) Biomedical applications of hydroxyapatite nanoparticles. Curr Pharm Biotechnol 11(4):333–342

    Article  Google Scholar 

  61. Mahdavi M, Namvar F, Ahmad MB, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules. 18:5954–5964

    Article  Google Scholar 

  62. Mansouri-Tehrani HA, Keyhanfar M, Behbahani M, Dini G (2021) Synthesis and characterization of algae-coated selenium nanoparticles as a novel antibacterial agent against Vibrio harveyi, a Penaeus vannamei pathogen. Aquaculture 534:736260

    Article  Google Scholar 

  63. Mata YN, Torres E, Blazquez ML, Ballester A, González FMJA, Munoz JA (2009) Gold (III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater 166:612–618

    Article  Google Scholar 

  64. Mohandass C, Vijayaraj AS, Rajasabapathy R, Satheeshbabu S, Rao SV, Shiva C, De-Mello L (2013) Biosynthesis of silver nanoparticles from marine seaweed Sargassum cinereum and their antibacterial activity. Indian J Pharm Sci 75:606–610

    Google Scholar 

  65. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanoparticle Res 10:507–517. https://doi.org/10.1007/s11051-007-9275-x

    Article  Google Scholar 

  66. Mubarak Ali D, Gopinath V, Rameshbabu N, Thajuddin N (2012) Synthesis and characterization of CdS nanoparticles using C-phycoerythrin from the marine cyanobacteria. Mater Lett 74:8–11. https://doi.org/10.1016/j.matlet.2012.01.026

    Article  Google Scholar 

  67. Mubarak Ali D, Sasikala M, Gunasekaran M, Thajuddin N (2013) Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, Oscillatoria willei NTDM01. Dig J Nanomater Biostruct 6:385–390

    Google Scholar 

  68. Murugan K, Samidoss CM, Panneerselvam C, Higuchi A, Roni M, Suresh U, Chandramohan B, Subramaniam J, Madhiyazhagan P, Dinesh D, Rajaganesh R, Alarfar AA, Nioletti M, Kumar S, Wei H, Canale A, Mehlhorn H, Benelli G (2015) Sea weed synthesized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi? Parasitol Res 114:4087–4097

    Article  Google Scholar 

  69. Nagarajan S, Arumugam, Kuppusamy K (2013) Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India. J Nanobiotechnol 11:39

    Article  Google Scholar 

  70. Natsuki J, Natsuki T (2015) One-step synthesis of silver nanoparticles using low molecular weight compounds at room temperature. Int J Mater Eng Technol 13:109–119

    Article  Google Scholar 

  71. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. https://doi.org/10.1126/science.1114397

    Article  Google Scholar 

  72. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22. https://doi.org/10.1016/j.envpol.2007.06.006

    Article  Google Scholar 

  73. Parial D, Patra HK, Dasgupta AKR, Pal R (2012) Screening of different algae for green synthesis of gold nanoparticles. Eur J Phycol 47:22–29

    Article  Google Scholar 

  74. Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ (2011) Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiot 5(3):69–78

    Article  Google Scholar 

  75. Priyadharshini RI, Prasannaraj G, Geetha N (2014) Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-alga (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Appl Biochem Biotechnol 174:2777–2790

    Article  Google Scholar 

  76. Rai A, Singh A, Ahmad A, Sastry M (2006) Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir 22(2):736–741

    Article  Google Scholar 

  77. Rajasulochana P, Krishnamoorthy P, Dhamotharan R (2012) Potential application of Kappaphycus alvareziiin agricultural and pharmaceutical industry. J Chem Pharm Res 4:33–37

    Google Scholar 

  78. Rajeshkumar S, Kannan C, Annadurai G (2012) Synthesis and characterization of antimicrobial silver nanoparticles using marine brown seaweed Padina tetrastromatica. Drug Invent Today 4:511–513

    Google Scholar 

  79. Rajeshkumar S, Malarkodi C, Gnanajobitha G, Paulkumar K, Vanaja M, Kannan C, Annadurai G (2013) Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J Nanostruct Chem 3:44

    Article  Google Scholar 

  80. Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941

    Article  Google Scholar 

  81. Rothen-Rutishauser B, Grass RN, Blank F, Limbach LK, Mühlfeld C (2009) Direct combination of nanoparticle fabrication and exposure to lung cell cultures in a closed setup as a method to simulate accidental nanoparticle exposure of humans. Environ Sci Technol 43(7):2634–2640

    Article  Google Scholar 

  82. Sathishkumar RS, Sundaramanickam A, Srinath R, Ramesh T, Saranya K, Meena M, Surya P (2019) Green synthesis of silver nanoparticles by bloom forming marine microalgae Trichodesmium erythraeum and its applications in antioxidant, drug-resistant bacteria, and cytotoxicity activity. J Saudi Chem Soc 23:1180–1191

    Article  Google Scholar 

  83. Savolainen K, Alenius H, Norppa H, Pylkkänen L, Tuomi T, Kasper G (2010) Risk assessment of engineered nanomaterials and nanotechnologies – a review. Toxicology. 269(2–3):92–104

    Article  Google Scholar 

  84. Selvaraj P, Neethu E, Rathika P, Jayaseeli JPR, Jermy BR, AbdulAzeez S, Borgio JF, Dhas TS (2020) Antibacterial potentials of methanolic extract and silver nanoparticles from marine algae. Biocatal Agric Biotechnol 28:101719

    Article  Google Scholar 

  85. Shalaby EA, Shanab SMM (2013) Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of Spirulina platensis. Indian J Geo-Mar Sci 42(5):556–564

    Google Scholar 

  86. Sharma B, Purkayastha DD, Hazra S, Gogoi L, Bhattacharjee CR, Ghosh NN, Rout J (2014) Biosynthesis of gold nanoparticles using a fresh water green alga, Prasiola crispa. Mater Lett 116:94–97

    Article  Google Scholar 

  87. Shiny P, Mukherjee A, Chandrasekaran N (2014) Marine algae mediated synthesis of the silver nanoparticles and its antibacterial efficiency. Int J Pharm Pharm Sci 5:239–241

    Google Scholar 

  88. Shukla MK, Singh RP, Reddy CRK, Jha B (2012) Synthesis and characterization of agar-based silver nanoparticles and nanocomposite film with antibacterial applications. Bioresour Technol 107:295–300

    Article  Google Scholar 

  89. Shunmugam R, Balusamy SR, Kumar V, Menon S, Lakshmi T, Perumalsamy H (2021) Biosynthesis of gold nanoparticles using marine microbe (Vibrio alginolyticus) and its anticancer and antioxidant analysis. J King Saud Univ - Sci 33:101260

    Article  Google Scholar 

  90. Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B: Biointerfaces 57:97–101

    Article  Google Scholar 

  91. Singh M, Kalaivani R, Manikandan S, Sangeetha N, Kumaraguru AK (2013) Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga. Appl Nanosci 3:145–151

    Article  Google Scholar 

  92. Singh G, Babele PK, Kumar A, Srivastava A, Sinha RP, Tyagi MB (2014) Synthesis of ZnO nanoparticles using the cell extract of the cyanobacterium, Anabaena strain L31 and its conjugation with UV-B absorbing compound shinorine. J Photochem Photobiol B 138:55–62

    Article  Google Scholar 

  93. Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P (2018) “Green” synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16:84

    Article  Google Scholar 

  94. Sinha SN, Paul D, Halder N, Sengupta D, Patra SK (2015) Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont.) Wittrock and evaluation of their antibacterial activity. Appl Nanosci 5:703–709

    Article  Google Scholar 

  95. Sokolsky-Papkov M, Kabanov A (2019) Synthesis of well-defined gold nanoparticles using Pluronic: the role of radicals and surfactants in nanoparticles formation. Polymers 11:1553

    Article  Google Scholar 

  96. Soni N, Prakash S (2011) Factors affecting the geometry of silver nanoparticles synthesis in Chrysosporium tropicum and Fusarium oxusporum. Am J Nanotechnol 2(1):112–121

    Google Scholar 

  97. Subramaniyam V, Subashchandrabose SR, Thavamani P, Megharaj M, Chen Z, Naidu R (2015) Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles. J Appl Phycol 27:1861–1869

    Article  Google Scholar 

  98. Sudha SS, Rajamanickam K, Rengaramanujam J (2013) Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian J Exp Biol 51:393–399

    Google Scholar 

  99. Suriya J, Bharathi Raja S, Sekar V, Rajasekaran R (2012) Biosynthesis of silver nanoparticles and its antibacterial activity using seaweed Urospora sp. Afr J Biotechnol 11:12192–12198

    Article  Google Scholar 

  100. Thangaraju N, Venkatalakshmi RP, Chinnasamy A, Kannaiyan P (2012) Synthesis of silver nanoparticles and the antibacterial and anticancer activities of the crude extract of Sargassum polycystum C. Agardh. Nano Biomed Eng 4:89–94

    Article  Google Scholar 

  101. Tran QH, Nguyen VQ, Le AT (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol 4:033001

    Article  Google Scholar 

  102. Uzair B, Liaqat A, Iqbal H, Menaa B, Razzaq A, Thiripuranathar G, Rana NF, Menaa F (2020) Green and cost-effective synthesis of metallic nanoparticles by algae: safe methods for translational medicine. Rev Bioeng 7(4):129. https://doi.org/10.3390/bioengineering7040129

    Article  Google Scholar 

  103. Vadlapudi V, Kaladhar DSVGK (2014) Review: Green synthesis of silver and gold nanoparticles. Middle-East J Sci Res 19(6):834–842

    Google Scholar 

  104. Venkatesan J, Manivasagan P, Kim SK, Kirthi AV, Marimuthu S, Rahuman AA (2014) Marine algae-mediated synthesis of gold nanoparticles using a novel Ecklonia cava. Bioprocess Biosyst Eng 37:1591–1597

    Article  Google Scholar 

  105. Vivek M, Kumar PS, Steffi S, Sudha S (2011) Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna J Med Biotechnol 3:143–148

    Google Scholar 

  106. Xie J, Lee JY, Wang D, Ting YP (2007) Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small 3:672–682

    Article  Google Scholar 

  107. Yugay YA, Usoltseva RV, Silant’ev VE, Egorova AE, Karabtsov AA, Kumeiko VV, Ermakova SP, Bulgakov VP, Shkryl YN (2020) Synthesis of bioactive silver nanoparticles using alginate, fucoidan and laminaran from brown algae as a reducing and stabilizing agent. Carbohydr Polym 245:116547

    Article  Google Scholar 

  108. Zheng S, Zhoub Q, Chen C, Yang F, Cai Z, Li D, Geng Q, Feng Y, Wang H (2019) Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticles and ions to green algae Chlorella vulgaris. Sci Total Environ 660:1182–1190

    Article  Google Scholar 

  109. Akpomie KG, Ghosh S, Gryzenhout M, Conradie J (2021) Ananas comosus peel–mediated green synthesized magnetite nanoparticles and their antifungal activity against four filamentous fungal strains. Biomass Convers Biorefineryhttps://doi.org/10.1007/s13399-021-01515-9

  110. Farrokheh A, Tahvildari K, Nozari M (2020) Biodiesel production from the Chlorella vulgaris and Spirulina platensis microalgae by electrolysis using CaO/KOH-Fe3O4 and KF/KOH-Fe3O4 as magnetic nanocatalysts. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00688-z

    Article  Google Scholar 

  111. González-Ballesteros N, Diego-González L, Lastra-Valdor M, Grimaldi M, Cavazza A, Bigi F, Rodríguez-Argüelles MC, Simón-Vázquezb R (2021) emopenSaccorhiza polyschidesemclose used to synthesize gold and silver nanoparticles with enhanced antiproliferative and immunostimulant activity. Mater Sci Eng C 123

  112. Patra JK, Baek K (2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater. https://doi.org/10.1155/2014/417305

  113. Dobrucka R, Romaniuk-Drapała A, Kaczmarek M (2021) Facile synthesis of Au/ZnO/Ag nanoparticles using Glechoma hederacea L. extract, and their activity against leukemia. Biomed Microdevices 23:14. https://doi.org/10.1007/s10544-021-00557-0

  114. Rahman A, Kumar S, Nawaz T (2020. Chapter 17: Biosynthesis of nanomaterials using algae. In: Microalgae cultivation for biofuels production Book. Academic Press, pp 265–279

  115. Shalaby SM, Madkour FF, El-Kassas HY, Mohamed AA, Elgarahy AM (2021) Green synthesis of recyclable iron oxide nanoparticles using Spirulina platensis microalgae for adsorptive removal of cationic and anionic dyes. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-021-15544-4

  116. Sharma D, Kanchi S, Bisetty K (2015) Biogenic synthesis of nanoparticles: a review. Arab J Chem. https://doi.org/10.1016/j.arabjc.2015.11.002

  117. Tang DYY, Yew GY, Koyande AK, Chew KW, Vo DN, Show PL (2020) Green technology for the industrial production of biofuels and bioproducts from microalgae: a review. Environ Chem Lett.https://doi.org/10.1007/s10311-020-01052-3

  118. Thiruchelvi R, Jayashree P, Mirunaalini K (2021) Synthesis of silver nanoparticle using marine red seaweed Gelidiella acerosa -a complete study on its biological activity and its characterisation. Mater Today: Proceedings.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad A. Shalaby.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob, R.H., Shanab, S.M. & Shalaby, E.A. Algal biomass nanoparticles: chemical characteristics, biological actions, and applications. Biomass Conv. Bioref. 13, 11441–11455 (2023). https://doi.org/10.1007/s13399-021-01930-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01930-y

Keywords

Navigation