Skip to main content
Log in

Kinetic study on the impact of acidity and acid concentration on the formation of 5-hydroxymethylfurfural (HMF), humins, and levulinic acid in the hydrothermal conversion of fructose

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In order to optimize the production of biobased platform chemicals, such as 5-hydroxymethylfurfural (HMF) and levulinic acid (LA), from biomass and sugars, reaction conditions have to be optimized. This article assesses the impact of acidity on the kinetic parameters of the hydrothermal conversion of fructose at 150 °C. The reaction parameters were varied in time (5–180 min), acid (NaHSO4, H3PO4, citric acid, and formic acid), and acid concentration (0.016 to 1.6 mol/l). The experimental data were evaluated with a novel kinetic model that includes the formation of HMF, LA, and humins. While it was expected that the dehydration rate of fructose to HMF and rehydration rate of HMF to levulinic acid depend linearly on the proton concentration, the results show that there is actually an exponential relationship. This can be explained by the participation of the acid rest ion in the dehydration and rehydration reactions. In contrast, the humin formation rate depends linearly on the proton concentration, and also, the sensitivity of this relationship is rather low. This clarifies why high acid concentrations or proton concentrations, respectively, increase the formation of LA to an expense of the humin formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Van PR, Van Der WJC, De JE, et al (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. doi: https://doi.org/10.1021/cr300182k

  2. Steinbach D, Kruse A, Sauer J (2017) Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production- a review. Biomass Convers Biorefinery 1–28. doi: https://doi.org/10.1007/s13399-017-0243-0

  3. de Carvalho EGL, Rodrigues F de A, Monteiro RS et al (2018) Experimental design and economic analysis of 5-hydroxymethylfurfural synthesis from fructose in acetone-water system using niobium phosphate as catalyst. Biomass Convers Biorefinery 8:635–646. https://doi.org/10.1007/s13399-018-0319-5

    Article  Google Scholar 

  4. Graham BJ, Raines RT (2019) Efficient metal-free conversion of glucose to 5-hydroxymethylfurfural using a boronic acid. Biomass Convers Biorefinery 9:471–477. https://doi.org/10.1007/s13399-018-0346-2

    Article  Google Scholar 

  5. Tsilomelekis G, Josephson TR, Nikolakis V, Caratzoulas S (2014) Origin of 5-hydroxymethylfurfural stability in water/dimethyl sulfoxide mixtures. ChemSusChem 7:117–126. https://doi.org/10.1002/cssc.201300786

    Article  Google Scholar 

  6. Kang S, Pan J, Gu G et al (2018) Sequential production of levulinic acid and porous carbon material from cellulose. Materials (Basel) 11:1408. https://doi.org/10.3390/ma11081408

    Article  Google Scholar 

  7. Girisuta B, Janssen LPBM, Heeres HJ (2006) A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid. Green Chem 8:701. https://doi.org/10.1039/b518176c

    Article  Google Scholar 

  8. Ryu J, Suh Y-W, Suh DJ, Ahn DJ (2010) Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds. Carbon N Y 48:1990–1998. https://doi.org/10.1016/j.carbon.2010.02.006

    Article  Google Scholar 

  9. Poerschmann J, Weiner B, Wedwitschka H et al (2015) Characterization of biochars and dissolved organic matter phases obtained upon hydrothermal carbonization of Elodea nuttallii. Bioresour Technol 189:145–153. https://doi.org/10.1016/j.biortech.2015.03.146

    Article  Google Scholar 

  10. Van Zandvoort I, Wang Y, Rasrendra CB et al (2013) Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions. ChemSusChem 6:1745–1758. https://doi.org/10.1002/cssc.201300332

    Article  Google Scholar 

  11. Hassanzadeh S, Aminlashgari N, Hakkarainen M (2014) Chemo-selective high yield microwave assisted reaction turns cellulose to green chemicals. Carbohydr Polym 112:448–457. https://doi.org/10.1016/j.carbpol.2014.06.011

    Article  Google Scholar 

  12. Jung D, Zimmermann M, Kruse A (2018) Hydrothermal carbonization of fructose: growth mechanism and kinetic model. ACS Sustain Chem Eng acssuschemeng.8b02118 . doi: https://doi.org/10.1021/acssuschemeng.8b02118

  13. Chang C, MA X, CEN P (2006) Kinetics of levulinic acid formation from glucose decomposition at high temperature. Chin J Chem Eng 14:708–712. https://doi.org/10.1016/S1004-9541(06)60139-0

    Article  Google Scholar 

  14. Weingarten R, Cho J, Xing R et al (2012) Kinetics and reaction engineering of levulinic acid production from aqueous glucose solutions. ChemSusChem 5:1280–1290. https://doi.org/10.1002/cssc.201100717

    Article  Google Scholar 

  15. Girisuta B, Janssen LPBM, Heeres HJ (2007) Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Ind Eng Chem Res 46:1696–1708. https://doi.org/10.1021/ie061186z

    Article  Google Scholar 

  16. Shen J, Wyman CE (2012) Hydrochloric acid-catalyzed levulinic acid formation from cellulose: data and kinetic model to maximize yields. Jiacheng AlChE J 58:236–246. https://doi.org/10.1002/aic.12556

    Article  Google Scholar 

  17. Girisuta B, Janssen LPBM, Heeres HJ (2006) A kinetic study on the conversion of glucose to levulinic acid. Chem Eng Res Des 84:339–349. https://doi.org/10.1205/cherd05038

    Article  Google Scholar 

  18. Weiqi W, Shubin W (2017) Experimental and kinetic study of glucose conversion to levulinic acid catalyzed by synergy of Lewis and Bronsted acids. Chem Eng J 307:389–398. https://doi.org/10.1016/j.cej.2016.08.099

    Article  Google Scholar 

  19. Swift TD, Bagia C, Choudhary V et al (2014) Kinetics of homogeneous Brønsted acid catalyzed fructose dehydration and 5-hydroxymethyl furfural rehydration: a combined experimental and computational study. ACS Catal 4:259–267. https://doi.org/10.1021/cs4009495

    Article  Google Scholar 

  20. Jiang Y, Yang L, Bohn CM et al (2015) Speciation and kinetic study of iron promoted sugar conversion to 5-hydroxymethylfurfural (HMF) and levulinic acid (LA). Org Chem Front 2:1388–1396. https://doi.org/10.1039/C5QO00194C

    Article  Google Scholar 

  21. Fachri BA, Abdilla RM, De BHHV et al (2015) Experimental and kinetic modeling studies on the sulfuric acid catalyzed conversion of d -fructose to 5-hydroxymethylfurfural and levulinic acid in water. ACS Sustain Chem Eng 3:3024–3034. https://doi.org/10.1021/acssuschemeng.5b00023

    Article  Google Scholar 

  22. Tan-Soetedjo JNM, Van De Bovenkamp HH, Abdilla RM et al (2017) Experimental and kinetic modeling studies on the conversion of sucrose to levulinic acid and 5-hydroxymethylfurfural using sulfuric acid in water. Ind Eng Chem Res 56:13228–13239. https://doi.org/10.1021/acs.iecr.7b01611

    Article  Google Scholar 

  23. Yan L, Greenwood AA, Hossain A, Yang B (2014) A comprehensive mechanistic kinetic model for dilute acid hydrolysis of switchgrass cellulose to glucose, 5-HMF and levulinic acid. RSC Adv 4:23492. https://doi.org/10.1039/c4ra01631a

    Article  Google Scholar 

  24. Shi N, Liu Q, Cen H et al (2019) Formation of humins during degradation of carbohydrates and furfural derivatives in various solvents. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-019-00414-4

  25. Steinbach D, Kruse A, Sauer J, Vetter P (2018) Sucrose is a promising feedstock for the synthesis of the platform chemical hydroxymethylfurfural. Energies 11:645. https://doi.org/10.3390/en11030645

    Article  Google Scholar 

  26. Körner P, Jung D, Kruse A (2018) The effect of different Brønsted acids on the hydrothermal conversion of fructose to HMF. Green Chem 20:2231–2241. https://doi.org/10.1039/C8GC00435H

    Article  Google Scholar 

  27. Patil SKR, Lund CRF (2011) Formation and growth of humins via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural. Energy Fuel 25:4745–4755. https://doi.org/10.1021/ef2010157

    Article  Google Scholar 

  28. Rasrendra CB, Windt M, Wang Y et al (2013) Experimental studies on the pyrolysis of humins from the acid-catalysed dehydration of C6-sugars. J Anal Appl Pyrolysis 104:299–307. https://doi.org/10.1016/j.jaap.2013.07.003

    Article  Google Scholar 

  29. Poerschmann J, Weiner B, Koehler R, Kopinke F-D (2017) Hydrothermal carbonization of glucose, fructose, and xylose—identification of organic products with medium molecular masses. ACS Sustain Chem Eng 5:6420–6428. https://doi.org/10.1021/acssuschemeng.7b00276

    Article  Google Scholar 

  30. Li M, Li W, Liu SX (2012) Control of the morphology and chemical properties of carbon spheres prepared from glucose by a hydrothermal method. J Mater Res 27:1117–1123. https://doi.org/10.1557/jmr.2011.447

    Article  Google Scholar 

  31. Titirici M-M, Antonietti M, Baccile N (2008) Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chem 10:1204. https://doi.org/10.1039/b807009a

    Article  Google Scholar 

  32. Sevilla M, Fuertes AB (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem - A Eur J 15:4195–4203. https://doi.org/10.1002/chem.200802097

    Article  Google Scholar 

  33. García-Bordejé E, Pires E, Fraile JM (2017) Parametric study of the hydrothermal carbonization of cellulose and effect of acidic conditions. Carbon N Y 123:421–432. https://doi.org/10.1016/j.carbon.2017.07.085

    Article  Google Scholar 

  34. Latham KG, Jambu G, Joseph SD, Donne SW (2014) Nitrogen doping of hydrochars produced hydrothermal treatment of sucrose in H2O, H2SO4, and NaOH. ACS Sustain Chem Eng 2:755–764. https://doi.org/10.1021/sc4004339

    Article  Google Scholar 

  35. Helgeson HC (1967) Thermodynamics of complex dissociation in aqueous solution at elevated temperatures. J Phys Chem 71:3121–3136. https://doi.org/10.1021/j100869a002

    Article  Google Scholar 

  36. Chang C, Ma X, Cen P (2009) Kinetic studies on wheat straw hydrolysis to levulinic acid. Chinese J Chem Eng 17:835–839. https://doi.org/10.1016/S1004-9541(08)60284-0

    Article  Google Scholar 

  37. Chuntanapum A, Matsumura Y (2009) Formation of tarry material from 5-HMF in subcritical and supercritical water. Ind Eng Chem Res 48:9837–9846. https://doi.org/10.1021/ie900423g

    Article  Google Scholar 

  38. Knežević D, Van Swaaij WPM, Kersten SRA (2009) Hydrothermal conversion of biomass: I , glucose conversion in hot compressed water. Ind Eng Chem Res 48:4731–4743

    Article  Google Scholar 

  39. Kruse A, Grandl R (2015) Hydrothermale karbonisierung: 3. Kinetisches modell. Chemie-Ingenieur-Technik 87:449–456. https://doi.org/10.1002/cite.201400116

    Article  Google Scholar 

  40. Patil SKR, Heltzel J, Lund CRF (2012) Comparison of structural features of humins formed catalytically from glucose, fructose, and 5-hydroxymethylfurfuraldehyde. Energy Fuels 26:5281–5293. https://doi.org/10.1021/ef3007454

    Article  Google Scholar 

  41. Tsilomelekis G, Orella MJ, Lin Z et al (2016) Molecular structure, morphology and growth mechanisms and rates of 5-hydroxymethyl furfural (HMF) derived humins. Green Chem 18:1983–1993. https://doi.org/10.1039/C5GC01938A

    Article  Google Scholar 

  42. Zhang M, Yang H, Liu Y et al (2012) Hydrophobic precipitation of carbonaceous spheres from fructose by a hydrothermal process. Carbon N Y 50:2155–2161. https://doi.org/10.1016/j.carbon.2012.01.024

    Article  Google Scholar 

  43. Salak Asghari F, Yoshida H (2006) Acid-catalyzed production of 5-hydroxymethyl furfural from D-fructose in subcritical water. Ind Eng Chem Res 45:2163–2173. https://doi.org/10.1021/ie051088y

    Article  Google Scholar 

  44. Luijkx GCA, van Rantwijk F, van Bekkum H (1993) Hydrothermal formation of 1,2,4-benzenetriol from 5-hydroxymethyl-2-furaldehyde and d-fructose. Carbohydr Res 242:131–139. https://doi.org/10.1016/0008-6215(93)80027-C

    Article  Google Scholar 

  45. Kumalaputri AJ, Randolph C, Otten E et al (2018) Lewis acid catalyzed conversion of 5-hydroxymethylfurfural to 1,2,4-benzenetriol, an overlooked biobased compound. ACS Sustain Chem Eng 6:3419–3425. https://doi.org/10.1021/acssuschemeng.7b03648

    Article  Google Scholar 

  46. Maruani V, Narayanin-Richenapin S, Framery E, Andrioletti B (2018) Acidic hydrothermal dehydration of D-Glucose into humins: identification and characterization of intermediates. ACS Sustain Chem Eng 6:13487–13493. https://doi.org/10.1021/acssuschemeng.8b03479

    Article  Google Scholar 

  47. Zhang M, Yang H, Liu Y et al (2012) First identification of primary nanoparticles in the aggregation of HMF. Nanoscale Res Lett 7:38. https://doi.org/10.1186/1556-276X-7-38

    Article  Google Scholar 

  48. Gozan M, Panjaitan JRH, Tristantini D et al (2018) Evaluation of separate and simultaneous kinetic parameters for levulinic acid and furfural production from pretreated palm oil empty fruit bunches. Int J Chem Eng 2018. https://doi.org/10.1155/2018/1920180

  49. Dussan K, Girisuta B, Haverty D et al (2013) Kinetics of levulinic acid and furfural production from Miscanthus×giganteus. Bioresour Technol 149:216–224. https://doi.org/10.1016/j.biortech.2013.09.006

    Article  Google Scholar 

  50. Zheng X, Zhi Z, Gu X et al (2017) Kinetic study of levulinic acid production from corn stalk at mild temperature using FeCl3 as catalyst. Fuel 187:261–267. https://doi.org/10.1016/j.fuel.2016.09.019

    Article  Google Scholar 

  51. Oscarson JL, Izatt RM, Brown PR et al (1988) Thermodynamic quantities for the interaction of SO42- with H+ and Na+ in aqueous solution from 150 to 320°C. J Solut Chem 17:841–863. https://doi.org/10.1007/BF00646553

    Article  Google Scholar 

  52. Larson JW, Zeeb KG, Hepler LG (2006) Heat capacities and volumes of dissociation of phosphoric acid (1st, 2nd, and 3rd), bicarbonate ion, and bisulfate ion in aqueous solution. Can J Chem 60:2141–2150. https://doi.org/10.1139/v82-306

    Article  Google Scholar 

  53. Marshall WL, Jones EV (1966) Second dissociation constant of sulfuric acid from 25 to 350° evaluated from solubilities of calcium sulfate in sulfuric acid solutions 1,2. J Phys Chem 70:4028–4040. https://doi.org/10.1021/j100884a045

    Article  Google Scholar 

  54. Lietzke MH, Stoughton RW, Young TF (2007) The bisulfate acid constant from 25 to 225° as computed from solubility data 1. J Phys Chem 65:2247–2249. https://doi.org/10.1021/j100829a036

    Article  Google Scholar 

  55. Hansen TS, Mielby J, Riisager A (2011) Synergy of boric acid and added salts in the catalytic dehydration of hexoses to 5-hydroxymethylfurfural in water. Green Chem 13:109–114. https://doi.org/10.1039/C0GC00355G

    Article  Google Scholar 

  56. Wrigstedt P, Keskiväli J, Leskelä M, Repo T (2015) The role of salts and Brønsted acids in Lewis acid-catalyzed aqueous-phase glucose dehydration to 5-hydroxymethylfurfural. ChemCatChem 7:501–507. https://doi.org/10.1002/cctc.201402941

    Article  Google Scholar 

  57. Ståhlberg T, Rodriguez-Rodriguez S, Fristrup P, Riisager A (2011) Metal-free dehydration of glucose to 5-(hydroxymethyl)furfural in ionic liquids with boric acid as a promoter. Chem - A Eur J 17:1456–1464. https://doi.org/10.1002/chem.201002171

    Article  Google Scholar 

  58. Wang C, Fu L, Tong X et al (2012) Efficient and selective conversion of sucrose to 5-hydroxymethylfurfural promoted by ammonium halides under mild conditions. Carbohydr Res 347:182–185. https://doi.org/10.1016/j.carres.2011.11.013

    Article  Google Scholar 

  59. Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131:1979–1985. https://doi.org/10.1021/Ja808537j

    Article  Google Scholar 

  60. Binder JB, Cefali AV, Blank JJ, Raines RT (2010) Mechanistic insights on the conversion of sugars into 5-hydroxymethylfurfural. Energy Environ Sci 3:765. https://doi.org/10.1039/b923961h

    Article  Google Scholar 

  61. Wrigstedt P, Keskiväli J, Perea-Buceta JE, Repo T (2017) One-pot transformation of carbohydrates into valuable furan derivatives via 5-hydroxymethylfurfural. ChemCatChem 9:4244–4255. https://doi.org/10.1002/cctc.201701106

    Article  Google Scholar 

  62. Körner P, Beil S, Kruse A (2019) Effect of salt on the formation of 5-hydroxymethylfurfural from ketohexoses under aqueous conditions. React Chem Eng. https://doi.org/10.1039/C8RE00300A

  63. Horvat J, Klaic B, Metelko B, Sunjic V (1986) Mechanism of levulinic acid formation in acid catalyzed hydrolysis of 2-(hydroxymethyl)furan and 5-(hydroxymethyl)-2-furancarboxaldehyde. Croat Chem Acta 59:429–438. https://doi.org/10.1080/02724634.2015.1031341

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks are given to the Paul and Yvonne Gillet Foundation, who supported Dennis Jung with a generous grant.

The work of Paul Körner was supported by a State Graduate Scholarship and is part of the bioeconomy graduate program BBW ForWerts.

Thanks to Avery Brown for his helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Dennis Jung and Paul Körner contributed equally.

Corresponding author

Correspondence to Dennis Jung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1428 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, D., Körner, P. & Kruse, A. Kinetic study on the impact of acidity and acid concentration on the formation of 5-hydroxymethylfurfural (HMF), humins, and levulinic acid in the hydrothermal conversion of fructose. Biomass Conv. Bioref. 11, 1155–1170 (2021). https://doi.org/10.1007/s13399-019-00507-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-019-00507-0

Keywords

Navigation