Skip to main content
Log in

Optimization of Optical Modulation in Amorphous WO3 Thin Films

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

WO3 thin films were prepared on indium-tin oxide (ITO) glass substrates at different substrate temperature by radio frequency magnetron sputtering. Then the films were soaked in five organic solvents of acetone, ethanol, cyclohexane, acetonitrile and ethyl acetate for 48 h, respectively. The changes in the microstructure, surface morphology and electrochromic (EC) properties of WO3 thin films before and after the immersion treatment were systematically studied. It was found that after soaking in ethanol, the optical modulation of amorphous WO3 thin films deposited at room temperature increased from 50 to 85%, showing excellent EC performance. Moreover, the immersion treatment in ethanol is also helpful for improving the EC properties of amorphous WO3 thin films prepared at elevated substrate temperature. However, after immersion in the other organic solvents, the optical modulation of WO3 thin films increased less (for acetone: 77%) or even decreased significantly (for cyclohexane, acetonitrile and ethyl acetate: 31%, 30% and 35%, respectively). In addition, the immersion treatment in ethanol cannot improve the optical modulation of crystalline WO3 thin films prepared at 600 °C, which dropped from 58 to 40%. The authors believe that this is mainly related to the different dredging effects of various organic solvents on the transport channels of Li-ions and electrons in WO3 thin films. Therefore, this work provides a new approach for the optimization of EC performance of amorphous WO3 thin films.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Deb, S.K.: A novel electrophotographic system[J]. Appl. Opt. 8(101), 192–195 (1969)

    Article  ADS  PubMed  Google Scholar 

  2. Niklasson, G.A., Granqvist, C.G.: Electrochromics for smart windows: Thin films of tungsten oxide and nickel oxide, and devices based on these[J]. J. Mater. Chem. 17(2), 127–156 (2007)

    Article  CAS  Google Scholar 

  3. Deb, S.K.: Opportunities and challenges in science and technology of WO3 for electrochromic and related applications[J]. Sol. Energy Mater. Sol. Cells. 92(2), 245–258 (2008)

    Article  ADS  CAS  Google Scholar 

  4. Granqvist, C.G.: Electrochromics for smart windows: Oxide-based thin films and devices[J]. Thin solid films. 564, 1–38 (2014)

    Article  ADS  CAS  Google Scholar 

  5. Huang, Z.F., Song, J., Pan, L., et al.: Tungsten oxides for photocatalysis, electrochemistry, and phototherapy[J]. Adv. Mater. 27(36), 5309–5327 (2015)

    Article  CAS  PubMed  Google Scholar 

  6. Bange, K.: Colouration of tungsten oxide films: A model for optically active coatings[J]. Sol. Energy Mater. Sol. Cells. 58(1), 1 (1999)

    Article  MathSciNet  CAS  Google Scholar 

  7. Lee, S.H., Cheong, H.M., Tracy, C.E., et al.: Electrochromic coloration efficiency of a-WO3 – y thin films as a function of oxygen deficiency[J]. Appl. Phys. Lett. 75(11), 1541–1543 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Zhang, Y., Liang, X., Jiang, T., et al.: Amorphous/crystalline WO3 dual phase laminated films: Fabrication, characterization and evaluation of their electrochromic performance for smart window applications[J]. Sol. Energy Mater. Sol. Cells. 244, 111820 (2022)

    Article  CAS  Google Scholar 

  9. Granqvist, C.G.: Oxide electrochromics: An introduction to devices and materials[J]. Sol. Energy Mater. Sol. Cells. 99, 1–13 (2012)

    Article  CAS  Google Scholar 

  10. Bechinger, C., Ferrere, S., Zaban, A., et al.: Photoelectrochromic windows and displays[J]. Nature. 383(6601), 608–610 (1996)

    Article  ADS  CAS  Google Scholar 

  11. Runnerstrom, E.L., Llordés, A., Lounis, S.D., et al.: Nanostructured electrochromic smart windows: Traditional materials and NIR-selective plasmonic nanocrystals[J]. Chem. Commun. 50(73), 10555–10572 (2014)

    Article  CAS  Google Scholar 

  12. Avendaño, E., Berggren, L., Niklasson, G.A., et al.: Electrochromic materials and devices: Brief survey and new data on optical absorption in tungsten oxide and nickel oxide films[J]. Thin solid films. 496(1), 30–36 (2006)

    Article  ADS  Google Scholar 

  13. Lynam, N.R.: Electrochromic automotive day/night mirrors[J]. SAE Trans., : 891–899. (1987)

  14. Lee, S.H., Cheong, H.M., Zhang, J.G., et al.: Electrochromic mechanism in a-WO3 – y thin films[J]. Appl. Phys. Lett. 74(2), 242–244 (1999)

    Article  ADS  CAS  Google Scholar 

  15. Garcia-Belmonte, G., Bueno, P.R., Fabregat-Santiago, F., et al.: Relaxation processes in the coloration of amorphous WO3 thin films studied by combined impedance and electro-optical measurements[J]. J. Appl. Phys. 96(1), 853–859 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Shi, Y., Sun, M., Zhang, Y., et al.: Rational design of oxygen deficiency-controlled tungsten oxide electrochromic films with an exceptional memory effect[J]. ACS Appl. Mater. Interfaces. 12(29), 32658–32665 (2020)

    Article  CAS  PubMed  Google Scholar 

  17. Wang, Z., Su, J., Qi, H., et al.: Porous nanocrystalline WO3 thin films: Fabrication, electrical and optical properties[J]. Surf. Innovations. 9(4), 214–221 (2020)

    Article  Google Scholar 

  18. Yang, T., Lin, Z., Wong, M.: Structures and electrochromic properties of tungsten oxide films prepared by magnetron sputtering[J]. Appl. Surf. Sci. 252(5), 2029–2037 (2005)

    Article  ADS  CAS  Google Scholar 

  19. Akl, A.A., Kamal, H., Abdel-Hady, K.: Characterization of tungsten oxide films of different crystallinity prepared by RF sputtering[J]. Phys. B: Condens. Matter. 325, 65–75 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Xue, J., Zhu, Y., Jiang, M., et al.: Electrochromic WO3 thin films prepared by combining ion-beam sputtering deposition with post-annealing[J]. Mater. Lett. 149, 127–129 (2015)

    Article  CAS  Google Scholar 

  21. Madhuri, K.V., Babu, M.B.: Studies on electron beam evaporated WO3 thin films[J]. Materials Today: Proceedings, 3(1): 84–89. (2016)

  22. Su, X., Li, Y., Jian, J., et al.: Situ etching WO3 nanoplates: Hydrothermal synthesis, photoluminescence and gas sensor properties[J]. Mater. Res. Bull. 45(12), 1960–1963 (2010)

    Article  CAS  Google Scholar 

  23. Yu, Z., Jia, X., Du, J., et al.: Electrochromic WO3 films prepared by a new electrodeposition method[J]. Sol. Energy Mater. Sol. Cells. 64(1), 55–63 (2000)

    Article  CAS  Google Scholar 

  24. Zhao, Y., Zhang, X., Chen, X., et al.: Preparation of WO3 films with controllable crystallinity for improved near-infrared electrochromic performances[J]. ACS Sustain. Chem. Eng. 8(31), 11658–11666 (2020)

    Article  CAS  Google Scholar 

  25. Lee, S., Lee, Y., Kwak, D., et al.: Improved pseudocapacitive performance of well-defined WO3 – x nanoplates[J]. Ceram. Int. 41(3), 4989–4995 (2015)

    Article  CAS  Google Scholar 

  26. Wang, X.G., Jang, Y.S., Yang, N.H., et al.: XPS and XRD study of the electrochromic mechanism of WOx films[J]. Surf. Coat. Technol. 99(1–2), 82–86 (1998)

    Article  CAS  Google Scholar 

  27. Barreca, D., Carta, G., Gasparotto, A., et al.: A study of nanophase tungsten oxides thin films by XPS[J]. Surf. Sci. Spectra. 8(4), 258–267 (2001)

    Article  ADS  CAS  Google Scholar 

  28. Bathe, S.R., Patil, P.S.: Titanium doping effects in electrochromic pulsed spray pyrolysed WO3 thin films[J]. Solid State Ionics. 179(9–10), 314–323 (2008)

    Article  CAS  Google Scholar 

  29. Su, J., Zhang, J., Liu, Y., et al.: Parameter-dependent oxidation of physically sputtered Cu and the related fabrication of Cu-based semiconductor films with metallic resistivity[J]. Sci. China Mater. 59(2), 144–150 (2016)

    Article  CAS  Google Scholar 

  30. Ma, J., Wang, Z., Qi, H., et al.: Fabrication of novel pyramid-textured and nanostructured Cu2O/Si heterojunctions[J]. Surf. Innovations. 9(4), 199–206 (2021)

    Article  Google Scholar 

  31. Zeng, X., Ma, J., Su, J., et al.: Fabrication of hand-like CuO nanostructured films by free oxidation of Cu2O nanoporous films in alkaline solution[J]. Mater. Res. Express. 4, 045009 (2017)

    Article  ADS  Google Scholar 

  32. Su, J., Wang, Z., Ma, J., et al.: Selective bias deposition of CuO thin film on unpolished Si wafer[J]. Mater. Res. Express. 7, 026402 (2020)

    Article  ADS  CAS  Google Scholar 

  33. Zhu, Y., Ma, J., Zhou, L., et al.: Cu2O porous nanostructured films fabricated by positive bias sputtering deposition[J]. Nanotechnology. 30, 095702 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Zhu, Y., Ma, J., Su, J., et al.: Nanoinstabilities of Cu2O porous nanostructured films as driven by nanocurvature effect and thermal activation effect[J]. Nanotechnology. 30, 335711 (2019)

    Article  CAS  PubMed  Google Scholar 

  35. Xu, S., Zhou, C.H., Yang, Y., et al.: Effects of ethanol on optimizing porous films of dye-sensitized solar cells[J]. Energy Fuels. 25(3), 1168–1172 (2011)

    Article  CAS  Google Scholar 

  36. Zhang, B., Xu, G., Liu, S., et al.: Electrochromic TiO2 films by a facile solvothermal process: Effect of ethanol content on growth and performance[J]. Opt. Mater. 122, 111744 (2021)

    Article  CAS  Google Scholar 

  37. Zhu, X., Qi, H., Chen, J., et al.: Effects of deposition parameters on RF-sputtered WO3 thin films[J]. Surf. Innovations. (2022). https://doi.org/10.1680/jsuin.22.01031

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Natural Science Foundation of Jiangsu Province (BK20191453) and Research and Innovation Program for Graduate Students of Jiangsu Province (KYCX21_2819 and KYCX21_2825).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangbin Su.

Ethics declarations

Conflict of Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Zhu, X., Chen, L. et al. Optimization of Optical Modulation in Amorphous WO3 Thin Films. Electron. Mater. Lett. 20, 131–139 (2024). https://doi.org/10.1007/s13391-023-00447-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-023-00447-y

Keywords

Navigation