Skip to main content
Log in

Mixed Phase Confirmation of InAsxP1−x Nanowire Array Using Modified Reciprocal Space Mapping

  • Original Article – Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In most cases, despite the bandgap tuning flexibility of ternary semiconducting nanowires, phase mixing during nanowire growth is inevitable because of the surface energy competition between the bulk stable zinc blende (ZB) and the metastable wurtzite (WZ) phase. As the electronic structure of the grown nanowires depends on not only the composition but also the crystal structure of the nanowires, careful characterization of the phase mixing phenomena in the nanowires is significant. However, because most of the phase analysis of grown nanowires relies on transmission electron microscopy (TEM), the phase analysis should be local, requires destructive sample preparation, and has a high time cost. Here, we developed a modified reciprocal space mapping method exploiting laboratory-based high-resolution X-ray diffraction (HR-XRD) for phase analysis in a one-dimensionally grown nanowire array on a (111) Si substrate in one measurement sequence. The main difficulty of phase analysis in a nanowire array using HR-XRD is the overlap of the diffraction peaks resulting from the structural similarity between ZB and WZ. Using the proposed method, we could successfully separate the diffraction overlapping of the WZ and ZB phases and reveal the lattice constants, composition, and effect of the strain of an InAsxP1−x nanowire array corresponding to the growth conditions in one measurement sequence. We also found that the crystallinity of metastable WZ was considerably lower than that of the bulk stable ZB in InAsxP1−x and that a phase fraction of WZ and ZB in InAsxP1−x nanowire arrays could be tuned by adjusting their composition and diameter.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dasgupta, N.P., Sun, J., Liu, C., Brittman, S., Andrews, S.C., Lim, J., Gao, H., Yan, R., Yang, P.: 25th Anniversary article: semiconductor nanowires—synthesis, characterization, and applications. Adv. Mater. 26, 2137–2184 (2014). https://doi.org/10.1002/adma.201305929

    Article  Google Scholar 

  2. Royo, M., De Luca, M., Rurali, R., Zardo, I.: A review on III-V core-multishell nanowires: growth, properties, and applications. J. Phys. D. Appl. Phys. 50, 143001 (2017). https://doi.org/10.1088/1361-6463/aa5d8e

    Article  Google Scholar 

  3. Ning, C.Z., Dou, L., Yang, P.: Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2, 1–14 (2017). https://doi.org/10.1038/natrevmats.2017.70

    Article  Google Scholar 

  4. Zhang, Y., Wu, J., Aagesen, M., Liu, H.: III-V nanowires and nanowire optoelectronic devices. J. Phys. D. Appl. Phys. 48, 463001 (2015). https://doi.org/10.1088/0022-3727/48/46/463001

    Article  Google Scholar 

  5. Fang, M., Han, N., Wang, F., Yang, Z.X., Yip, S., Dong, G., Hou, J.J., Chueh, Y., Ho, J.C.: III-V nanowires: synthesis, property manipulations, and device applications. J. Nanomater. 2014, 702859 (2014). https://doi.org/10.1155/2014/702859

    Article  Google Scholar 

  6. Barrigón, E., Heurlin, M., Bi, Z., Monemar, B., Samuelson, L.: Synthesis and applications of III-V nanowires. Chem. Rev. 119, 9170–9220 (2019). https://doi.org/10.1021/acs.chemrev.9b00075

    Article  Google Scholar 

  7. Choi, S.B., Oh, M.S., Han, C.J., Kang, J.-W., Lee, C.-R.: Conformable, thin, and dry electrode for electrocardiography using composite of silver nanowires and polyvinyl butyral. Electron. Mater. Lett. 15, 267–277 (2019). https://doi.org/10.1007/s13391-019-00125-y

    Article  Google Scholar 

  8. Ma, S., Feng, S., Kang, S., Wang, F., Fu, X., Lu, W.: A high performance solar-blind detector based on mixed–phase Zn0.45Mg0.55O alloy nanowires network. Electron. Mater. Lett. 15, 303–313 (2019). https://doi.org/10.1007/s13391-019-00121-2

    Article  Google Scholar 

  9. Kaur, N., Zappa, D. & Comini, E. Shelf life study of NiO nanowire sensors for NO2 detection. Electron. Mater. Lett. 15(6), 743–749 (2019). https://doi.org/10.1007/s13391-019-00172-5

    Article  Google Scholar 

  10. Wang, C., Wu, H., Zhu, H. et al.: Effects of sulfur doping on generalized stacking fault energy of indium phosphide. Electron. Mater. Lett. 16, 506–511 (2020)

    Article  Google Scholar 

  11. Jung, C.S., Kim, H.S., Jung, G.B., Gong, K.J., Cho, Y.J., Jang, S.Y., Kim, C.H., Lee, C.W., Park, J.: Composition and phase tuned InGaAs alloy nanowires. J. Phys. Chem. C 115, 7843–7850 (2011). https://doi.org/10.1021/jp2003276

    Article  Google Scholar 

  12. Shin, J.C., Kim, K.H., Yu, K.J., Hu, H., Yin, L., Ning, C.Z., Rogers, J.A., Zuo, J.M., Li, X.: InxGa1-xAs nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics. Nano Lett. 11, 4831–4838 (2011). https://doi.org/10.1021/nl202676b

    Article  Google Scholar 

  13. Shin, J.C., Lee, A., Mohseni, P.K., Kim, D.Y., Yu, L., Kim, J.H., Kim, H.J., Choi, W.J., Wasserman, D., Choi, K.J., Li, X.: Wafer-scale production of uniform InAsyP1-y nanowire array on silicon for heterogeneous integration. ACS Nano 7, 5463–5471 (2013). https://doi.org/10.1021/nn4014774

    Article  Google Scholar 

  14. Akiyama, T., Sano, K., Nakamura, K., Ito, T.: An empirical potential approach to wurtzite-zinc-blende polytypism in group III–V semiconductor nanowires. Jpn. J. Appl. Phys. Part 2 Lett. 45, L275 (2006). https://doi.org/10.1143/JJAP.45.L275

    Article  Google Scholar 

  15. Lee, J.H., Pin, M.W., Choi, S.J., Jo, M.H., Shin, J.C., Hong, S.G., Lee, S.M., Cho, B., Ahn, S.J., Song, N.W., Yi, S.H., Kim, Y.H.: Electromechanical properties and spontaneous response of the current in InAsP nanowires. Nano Lett. 16, 6738–6745 (2016). https://doi.org/10.1021/acs.nanolett.6b02155

    Article  Google Scholar 

  16. Kim, I., Kim, H.S., Ryu, H.: Piezoresistivity of InAsP nanowires: role of crystal phases and phosphorus atoms in strain-induced channel conductances. Molecules 24, 3249 (2019). https://doi.org/10.3390/molecules24183249

    Article  Google Scholar 

  17. Ertekin, E., Greaney, P.A., Chrzan, D.C., Sands, T.D.: Equilibrium limits of coherency in strained nanowire heterostructures. J. Appl. Phys. 97, 114325 (2005). https://doi.org/10.1063/1.1903106

    Article  Google Scholar 

  18. Chuang, L.C., Moewe, M., Chase, C., Kobayashi, N.P., Chang-Hasnain, C., Crankshaw, S.: Critical diameter for III–V nanowires grown on lattice-mismatched substrates. Appl. Phys. Lett. 90, 043115 (2007). https://doi.org/10.1063/1.2436655

    Article  Google Scholar 

  19. Park, Y., Cich, M.J., Zhao, R., Specht, P., Weber, E.R., Stach, E., Nozaki, S.: Analysis of twin defects in GaAs(111)B molecular beam epitaxy growth. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 18, 1566 (2000). https://doi.org/10.1116/1.591427

    Article  Google Scholar 

  20. Niewczas, M.: Lattice correspondence during twinning in hexagonal close-packed crystals. Acta Mater. 58, 5848–5857 (2010). https://doi.org/10.1016/j.actamat.2010.06.059

    Article  Google Scholar 

  21. Cullity, B.D., Stock, S.R.: Elements of X-Ray Diffraction. Pearson, London (2001)

    Google Scholar 

Download references

Acknowledgements

This research was supported by Establishment of the Foundation for Advanced Materials Measurement Platform funded by the Korea Research Institute of Standards and Science (KRISS-2021-GP2021-0011) and the National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (Grant No. 2020R1C1C1014257).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eun Kyu Kim, Chang-Soo Kim or Seungwoo Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, IY., Choi, M., Kim, J. et al. Mixed Phase Confirmation of InAsxP1−x Nanowire Array Using Modified Reciprocal Space Mapping. Electron. Mater. Lett. 18, 79–86 (2022). https://doi.org/10.1007/s13391-021-00315-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-021-00315-7

Keywords

Navigation