Skip to main content
Log in

Influence of Fundamental Parameters on the Intrinsic Voltage Gain of Organic Thin Film Transistors

  • Original Article - Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The intrinsic gain is a key metric in analog electronics, it is the highest gain that can be obtained for an amplifier in the transistor configuration. However, there lack the demonstration of the intrinsic gain with different parameters comprehensively, they often focus on one or two features. In this work, we fabricated organic thin film transistors (OTFTs) with two types of semiconducting material to compare the effect of mobility on intrinsic gain and varied structural parameters such as active layer thickness and channel length to explore the impacts of those factors. We found that the intrinsic gain does not have much correlation with the mobility and the contact resistance. In addition, the intrinsic gain decreases as the channel length decreases, the increment of the gate voltage, and the decrease of the thickness of the active layer. The better understanding of different impacts on the intrinsic gain on OTFTs could provide indication for its real application design of organic circuit to obtain higher gain value, which is needed in the future amplifier processing.

Graphic Abstract

We fabricated organic thin film transistors (OTFTs) with indacenodithiophene-co-benzothiadiazole (IDTBT) and Poly(N,N′-bis-4-butylphenyl-N,N′-bisphenyl)benzidine (Poly-TPD) in order to investigate influences of fundamental parameters on intrinsic gain. We varied structural parameters such as active layer thickness and channel length on fabrication of devices. The mobility has extracted and compared with fundamental parameters. Even though devices with Poly-TPD showed lower mobility, but it has higher intrinsic gain. While, IDTBT-based devices showed lower intrinsic gain, even though they have much higher mobility than Poly-TPD-based device. As a result, we confirmed that thick active layer, long channel length, and small gate voltage are favorable to obtaining high intrinsic gain in OTFTs. We suggest that OTFT is a suitable configuration for exploration the intrinsic gain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee, S., Gandla, S., Naqi, M., Jung, U., Youn, H., Pyun, D., et al.: All-day mobile healthcare monitoring system based on heterogeneous stretchable sensors for medical emergency. IEEE Trans. Ind. Electron. 67(10), 8808–8816 (2020)

    Article  Google Scholar 

  2. Shin, Y.B., Ju, Y.H., Seo, I., Lee, C., Kim, Y., et al.: Modified inverted layer processing of ultrathin touch sensor impregnating Ag nanowires with both enlarged surface coverage of conductive pathways and ultralow roughness. Electron. Mater. Lett. 16, 247–254 (2020)

    Article  CAS  Google Scholar 

  3. Pecunia, V., Abdinia, S., Sirringhaus, H., Cantatore, E.: Organic and Amorphous-Metal-Oxide Flexible Analogue Electronics. Cambridge University Press, Cambridge (2018)

    Book  Google Scholar 

  4. Agopian, P.G.D., Martino, J.A., Rooyackers, R., Vandooren, A., Simoen, E., Thean, A., et al.: Intrinsic voltage gain of Line-TFETs and comparison with other TFET and MOSFET architectures, pp. 13–15 (2016).

  5. Go, M.S., Song, J.M., Kim, C., Lee, J., Kim, J., Lee, M.J.: Hybrid dielectric layer for low operating voltages of transparent and flexible organic complementary inverter. Electron. Mater. Lett. 11(2), 252–258 (2015)

    Article  CAS  Google Scholar 

  6. Cheng, R., Jiang, S., Chen, Y., Liu, Y., Weiss, N., Cheng, H.C., et al.: Few-layer molybdenum disulfide transistors and circuits for highspeed flexible electronics. Nat. Commun. 5(5143), 1–9 (2014)

    Google Scholar 

  7. Portilla, L., Zhao, J., Yan, W., Sun, L., Li, F., Robin, M., et al.: Ambipolar deep-subthreshold printed-carbon-nanotube transistors for ultralow-voltage and ultralow-power electronics. ACS Nano 14(10), 14036–14046 (2020)

    Article  CAS  Google Scholar 

  8. Pecunia, V., Banger, K., Sou, A., Sirringhaus, H.: Solution-based self-aligned hybrid organic/metal-oxide complementary logic with megahertz operation. Organ. Electron. 21, 177–183 (2015)

    Article  CAS  Google Scholar 

  9. Venkateshvaran, D., Nikolka, M., Sadhanala, A., Lemaur, V., Zelazny, M., Kepa, M., et al.: Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515(7527), 384–388 (2014)

    Article  CAS  Google Scholar 

  10. Pecunia, V., Banger, K., Sirringhaus, H.: High-performance solution-processed amorphous-oxide-semiconductor TFTs with organic polymeric gate dielectrics. Adv. Electron. Mater. 1(1400024), 1–6 (2015)

    Google Scholar 

  11. Liang, K., Wang, Y., Shao, S., Luo, M., Pecunia, V., Shao, L., et al.: High performance metal oxide thin film transistors based on inkjet printed self-confined bilayer heterojunction channel. J. Mater. Chem. C 7(20), 6169–6177 (2019)

    Article  CAS  Google Scholar 

  12. Pecunia, V., Nikolka, M., Sou, A., Nasrallah, I., Amin, A.Y., McCulloch, I., et al.: Trap healing for high-performance low-voltage polymer transistors and solution-based analog amplifiers on foil. Adv. Mater. 29(1606938), 1–8 (2017)

    Google Scholar 

  13. Kim, C.H.: Improved device ideality in aged organic transistors. Electron. Mater. Lett. 15, 166–170 (2019)

    Article  CAS  Google Scholar 

  14. Goetz, K.P., Jurchescu, O.D.: Handbook of Organic Materials for Electronic and Photonic Devices, 2nd edn. Woodhead Publishing, Cambridge (2019)

    Google Scholar 

  15. Luigi, F., Mattia, F., Mariano, G., La, R.M., Nunzia, M., Alessandro, M., et al.: On the way to plastic computation. IEEE Circuits Syst. Mag. 8, 6–18 (2008)

    Google Scholar 

  16. Matsui, H., Takeda, Y., Tokito, S.: Flexible and printed organic transistors: from materials to integrated circuits. Organ. Electron. 75(105432), 1–17 (2019)

    Google Scholar 

  17. Kwon, J., Takeda, Y., Shiwaku, R., Tokito, S., Cho, K., Jung, S.: Three-dimensional monolithic integration in flexible printed organic transistors. Nat. Commun. 10(54), 1–10 (2019)

    Google Scholar 

  18. Brossard, F.S.F., Pecunia, V., Ramsay, A.J., Griffiths, J.P., Hugues, M., Sirringhaus, H.: Inkjet-printed nanocavities on a photonic crystal template. Adv. Mater. 29(47), 1704425 (2017)

    Article  Google Scholar 

  19. Takeda, Y., Sekine, T., Wang, Y.F., Okamoto, T., Matsui, H., Kumaki, D., et al.: Highspeed complementary integrated circuit with a stacked structure using fine electrodes formed by reverse offset printing. ACS Appl. Electron. Mater. 2(3), 763–768 (2020)

    Article  CAS  Google Scholar 

  20. Li, J., Tsukada, H., Miyasako, T., Tue, P.T., Akiyama, K., Nakazawa, H., et al.: Hightransconductance indium oxide transistors with a lanthanum-zirconium gate oxide characteristic of an electrolyte. J. Appl. Phys. 127(064504), 1–9 (2020)

    Google Scholar 

  21. Kheradmand-Boroujeni, B., Schmidt, G.C., Höft, D., Haase, K., Bellmann, M., Ishida, K., et al.: Small-signal characteristics of fully-printed high-current flexible all polymer three-layer-dielectric transistors. Organ. Electron. 34, 267–275 (2016)

    Article  CAS  Google Scholar 

  22. Kheradmand-Boroujeni, B., Schmidt, G.C., Höft, D., Shabanpour, R., Perumal, C., Meister, T., et al.: Analog characteristics of fully printed flexible organic transistors fabricated with low-cost mass-printing techniques. IEEE Trans. Electron Devices 61(5), 1423–1430 (2014)

    Article  Google Scholar 

  23. Murmann, B., Xiong, W.: Design of analog circuits using organic field-effect transistors, pp. 504–507 (2010)

  24. Wanga, J.Z., Zheng, Z.H., Sirringhaus, H.: Suppression of short-channel effects in organic thin-film transistors. Appl. Phys. Lett. 89(083513), 1–3 (2006)

    Google Scholar 

  25. Wang, J.Z., Zheng, Z.H., Li, H.W., Huck, W.T.S., Sirringhaus, H.: Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nat. Mater. 3, 171–176 (2004)

    Article  Google Scholar 

  26. Pude, M., Macchietto, C., Singh, P., Burleson, J., Mukund, P.R.: Maximum Intrinsic Gain Degradation in Technology Scaling, pp. 1–2 (2007)

  27. Annema, A.J.: Analog circuit performance and process scaling. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 46(6), 711–725 (1999)

    Article  Google Scholar 

  28. Annema, A.J., Nauta, B., van Langevelde, R., Tuinhout, H.: Analog circuits in ultra-deep-submicron CMOS. IEEE J. Solid-State Circuits 40(1), 132–143 (2005)

    Article  Google Scholar 

  29. Bahubalindruni, P.G., Kiazadeh, A., Sacchetti, A., Martins, J., Rovisco, A., Tavares, V.G., et al.: Influence of channel length scaling on InGaZnO TFTs characteristics: unity current-gain cutoff frequency, intrinsic voltage-gain, and on-resistance. J. Disp. Technol. 12(6), 515–518 (2016)

    Article  CAS  Google Scholar 

  30. Nikolka, M., Schweicher, G., Armitage, J., Nasrallah, I., Jellett, C., Guo, Z., et al.: Performance improvements in conjugated polymer devices by removal of water-induced traps. Adv. Mater. 30(1801874), 1–8 (2018)

    Google Scholar 

  31. Mallik, A., Chattopadhyay, A.: Tunnel field-effect transistors for analog/mixed-signal system-on-chip applications. IEEE Trans. Electron Devices 59(4), 888–894 (2012)

    Article  Google Scholar 

  32. Alt, A., Hirshy, H., Jiang, S., Lee, K.B., Casbon, M.A., Chen, P., et al.: Analysis of gain variation with changing supply voltages in GaN HEMTs for envelope tracking power amplifiers. IEEE Trans. Microw. Theory Tech. 67(7), 2495–2504 (2019)

    Article  Google Scholar 

  33. Venkateshvaran, D., Nikolka, M., Sadhanala, A., Lemaur, V., Zelazny, M., Kepa, M., et al.: Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014)

    Article  CAS  Google Scholar 

  34. Nikolka, M., Nasrallah, I., Rose, B., Ravva, M.K., Broch, K., Sadhanala, A., et al.: High operational and environmental stability of highmobility conjugated polymer field-effect transistors through the use of molecular additives. Nat. Mater. 16, 356–362 (2017)

    Article  CAS  Google Scholar 

  35. Okachi, T.: Mobility overestimation due to minority carrier injection and trapping in organic field-effect transistors. Org. Electron. 57, 34–44 (2018)

    Article  CAS  Google Scholar 

  36. Xu, Y., Sun, H., Liu, A., Zhu, H., Li, B., Minari, T., et al.: Essential effects on the mobility extraction reliability for organic transistors. Adv. Funct. Mater. 28(1803907), 1–14 (2018)

    Google Scholar 

  37. Nasr, J.R., Schulman, D.S., Sebastian, A., Horn, M.W., Das, S.: Mobility deception in nanoscale transistors: an untold contact story. Adv. Mater. 31(1806020), 1–9 (2018)

    Google Scholar 

  38. Chen, C., Yang, B., Li, G., Zhou, H., Huang, B., Zhan, Q.W.R., et al.: Analysis of ultrahigh apparent mobility in oxide field-effect transistors. Adv. Sci. 6(1801189), 1–10 (2019)

    Google Scholar 

  39. Haddock, J.N., Zhang, X., Zheng, S., Zhang, Q., Marder, S.R., Kippelen, B.: A comprehensive study of short channel effects in organic field-effect transistors. Org. Electron. 7(1), 45–54 (2006)

    Article  Google Scholar 

  40. Chabinyc, M.L., Lu, J.P., Street, R.A., Wu, Y., Liu, P., et al.: Short channel effects in regioregular poly(thiophene) thin film transistors. J. Appl. Phys. 96(4), 2063–2070 (2004)

    Article  CAS  Google Scholar 

  41. Zaumseil, J., Sirringhaus, H.: Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 107(4), 1296–1323 (2007)

    Article  CAS  Google Scholar 

  42. Nešpurek, S., Zmeškal, O., Sworakowski, J.: Space-charge-limited currents in organic films: some open problems. Thin Solid Films 516(24), 8949–8962 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Postdoctoral start up fund (3231704619) from the Soochow University, the National Natural Science Foundation of China (Grant Nos. 61950410759 and 61805166), the Jiangsu Province Natural Science Foundation (Grant No. BK20170345), the Collaborative Innovation Center of Suzhou Nano Science Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the 111 Project, and the Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaewon Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 235 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Portilla, L. & Kim, C. Influence of Fundamental Parameters on the Intrinsic Voltage Gain of Organic Thin Film Transistors. Electron. Mater. Lett. 17, 277–285 (2021). https://doi.org/10.1007/s13391-021-00283-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-021-00283-y

Keywords

Navigation