Skip to main content
Log in

Correlation of reverse leakage current conduction mechanism and electrostatic discharge robustness of transient voltage suppression diode

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Five transient voltage suppression (TVS) diodes with breakdown voltages (BV) of 6, 7, 11, 13 and 15 V have been developed using low-temperature (LT) epitaxy technology and an LT fabrication process. The electrostatic discharge (ESD) performance and temperature dependency of reverse leakage current are investigated by applying the IEC61000-4-2 (IEC) standard and an I-V-T analysis. The TVS diodes exhibited excellent ESD robustness, exceeding the standard ESD requirement of IEC level 4, 8 kV in contact discharge, while also maintaining the reverse leakage current level below 10−9 A. Excellent ESD performance was found to be relevant for lower breakdown voltage TVS diodes. The reverse leakage currents showed substantial changes in thermal activation energy from 0.43 to 0.6 eV with respect to BV control from 6 to 15 V. The increased activation energy at high BV was attributed to the transition of the conduction mechanism from tunneling mode to generation-recombination mode. The reduction of reverse leakage current from a generation-recombination to tunneling conduction mechanism is expected to improve the ESD performance of TVS diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Choi, D. H. Cho, Ch. J. Choi, J. Y Kim, J. W. Yang, and K. H. Shim, Semicond. Sci. Technol. 26, 055009 (2011).

    Article  Google Scholar 

  2. A. Amerasekera and C. Duvvury, IEEE Trans. Compon., Packag., Manuf. Technol. 18, 314 (1995).

    Article  Google Scholar 

  3. S. S. Choi, D. H. Cho, and K. H. Shim, Electron. Mater. Lett. 5, 59 (2009).

    Article  Google Scholar 

  4. D. Bouangeune, W. K. Hong, S. S. Choi, C. J. Choi, D. H. Cho, J. M. Park, J. H Lee, H. D. Yang, and K. H. Shim, Proc. of the 1 st IEEE GCCE, p. 189, IEEE Inst. Elec. Electron. Eng. Inc., Japan (2012).

    Google Scholar 

  5. D. Bouangeune, Y. H. Kil, S. S. Choi, D. H. Cho, K. H. Shim, and C. J. Choi, Mater. Transactions. 54, 2125 (2013).

    Article  Google Scholar 

  6. T. S. Kim, Y. H. Kil, H. D. Yang, J. H. Yang, W. K. Hong, S. Kang, T. S. Jeong, and K. H. Shim, Electron. Mater. Lett. 8, 559 (2012).

    Article  Google Scholar 

  7. B. Jeppesen and C. Bussmann, Proc. of the Conference Northcon, p. 134, IEEE Inst. Elec. Electron. Eng. Inc., Seattle, WA (1998).

    Google Scholar 

  8. V. V. N. Obrej and A. Dr. C. Obreja, Phys. Status Solidi. 207, 1252 (2010).

    Article  Google Scholar 

  9. H. D. Lee, S. G. Lee, S. H. Lee, Y. J. Lee, and J. M. Hwang, Jpn. J. Appl. Phys. 37, 1179 (1998).

    Article  Google Scholar 

  10. A. Czerwinski, E. Simoen, A. Poyai, and C. Claeys, J. Appl. Phys. 94, 1218 (2003).

    Article  Google Scholar 

  11. H. He, L. Cao, L. Wan, H. Zhao, G. Xu, and F. Guo, Electron. Mater. Lett. 8, 463 (2012).

    Article  Google Scholar 

  12. B. S. Chen and M. C. Chen, IEEE Trans. Electron Devices 43, 258 (1996).

    Article  Google Scholar 

  13. G. A. M. Hurkx, H. C. de Graaff, W. J. Kloosterman, and M. P. G. Knuvers, IEEE Trans. Electron Devices 39, 2090 (1992).

    Article  Google Scholar 

  14. A. G. Chynoweth and G. L. Pearson, J. Appl. Phys. 29, 1103 (1958).

    Article  Google Scholar 

  15. P. Rodin, U. Ebert, W. Hundsdorfer, and I. Grekhov, J. Appl. Phys. 92, 958 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Hwan Shim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouangeune, D., Choi, SS., Choi, CJ. et al. Correlation of reverse leakage current conduction mechanism and electrostatic discharge robustness of transient voltage suppression diode. Electron. Mater. Lett. 10, 893–898 (2014). https://doi.org/10.1007/s13391-014-3296-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-3296-2

Keywords

Navigation