Skip to main content
Log in

Morphological and Physiological Response of Helianthus annuus L. to Drought Stress and Correlation of Wax Contents for Drought Tolerance Traits

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Sunflower is the fourth most important oil seed crop of the world. Drought is a major limiting factor severely influencing the production sunflower. Cuticular wax is the outermost defensive layer which protect the plants from abiotic stress. In present investigation, ten sunflower genotypes were grown in growth chambers along with their controls. At the age of thirty days, drought stress was applied to these genotypes for ten days to study the impact of dehydration stress on different drought tolerance traits. Further, we studied the association of epicuticular wax load on drought-related traits, i.e., morpho-physiological traits, photosynthetic pigments, osmolyte contents and enzymatic activities both under stress and normal conditions. It was observed that sunflower genotypes subjected to drought stress enhanced wax load compared to normal plants. However, drought stress reduced leaf area, relative water contents, leaf water potential, osmotic adjustment and chlorophyll contents. In addition, proline, glycine betaine contents and antioxidant enzymatic activities of SOD, POD and CAT increased when plants were subjected to drought condition. Regression analysis indicated that osmolytes and antioxidant enzymatic activities showed positive correlation with wax quantity, whereas physiological traits showed negative correlation with wax load indicating elevation in wax quantity, reduced transpiration rate, leaf water potential and residual transpiration under drought condition. Based on findings, it can be concluded role of wax quantity can be exploited to develop genotypes with enhanced wax content to tolerate the drought stress and identification of drought resistant sunflower genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bi, H.; Kovalchuk, N.; Langridge, P.; Tricker, P.J.; Lopato, S.; Borisjuk, N.: The impact of drought on wheat leaf cuticle properties. BMC Plant Biol. 17, 85 (2017). https://doi.org/10.1186/s12870-017-1033-3

    Article  Google Scholar 

  2. Pandey, P.; Irulappan, V.; Bagavathiannan, M.V.; Senthil-Kumar, M.: Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci. (2017). https://doi.org/10.3389/fpls.2017.00537

    Article  Google Scholar 

  3. Wang, Y.; Mao, H.; Lv, Y.; Chen, G.; Jiang, Y.: Comparative analysis of total wax content, chemical composition and crystal morphology of cuticular wax in Korla pear under different relative humidity of storage. Food Chem. 339, 128097 (2021). https://doi.org/10.1016/j.foodchem.2020.128097

    Article  Google Scholar 

  4. Javelle, M.; Vernoud, V.; Depège-Fargeix, N.; Arnould, C.; Oursel, D.; Domergue, F.; Sarda, X.; Rogowsky, P.M.: Overexpression of the epidermis-specific homeodomain-leucine zipper IV transcription factor OUTER CELL LAYER1 in maize identifies target genes involved in lipid metabolism and cuticle biosynthesis. Plant Physiol. 154, 273–286 (2010). https://doi.org/10.1104/pp.109.150540

    Article  Google Scholar 

  5. Bi, H.; Luang, S.; Li, Y.; Bazanova, N.; Borisjuk, N.; Hrmova, M.; Lopato, S.: Wheat drought-responsive WXPL transcription factors regulate cuticle biosynthesis genes. Plant Mol. Biol. 94, 15–32 (2017). https://doi.org/10.1007/s11103-017-0585-9

    Article  Google Scholar 

  6. Busta, L.; Hegebarth, D.; Kroc, E.; Jetter, R.: Changes in cuticular wax coverage and composition on developing Arabidopsis leaves are influenced by wax biosynthesis gene expression levels and trichome density. Planta 245, 297–311 (2017). https://doi.org/10.1007/s00425-016-2603-6

    Article  Google Scholar 

  7. Guo, Y.; Busta, L.; Jetter, R.: Cuticular wax coverage and composition differ among organs of Taraxacum officinale. Plant Physiol. Biochem. 115, 372–379 (2017). https://doi.org/10.1016/j.plaphy.2017.04.004

    Article  Google Scholar 

  8. Samuels, L.; Kunst, L.; Jetter, R.: Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu. Rev. Plant Biol. 59, 683–707 (2008). https://doi.org/10.1146/annurev.arplant.59.103006.093219

    Article  Google Scholar 

  9. Bernard, A.; Joubès, J.: Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Prog. Lipid Res. 52, 110–129 (2013). https://doi.org/10.1016/j.plipres.2012.10.002

    Article  Google Scholar 

  10. R. Jetter, S. Schäffer, M. Riederer (2000) Leaf cuticular waxes are arranged in chemically and mechanically distinct layers : evidence from Prunus laurocerasus L. pp 619–628.

  11. Lee, S.B.; Suh, M.C.: Recent advances in cuticular wax biosynthesis and its regulation in Arabidopsis. Mol. Plant. 6, 246–249 (2013). https://doi.org/10.1093/mp/sss159

    Article  Google Scholar 

  12. Go, Y.S.; Kim, H.; Kim, H.J.; Suh, M.C.: Arabidopsis cuticular wax biosynthesis is negatively regulated by the DEWAX gene encoding an AP2/ERF-type transcription factor. Plant Cell (2014). https://doi.org/10.1105/tpc.114.123307

    Article  Google Scholar 

  13. Panikashvili, D.; Shi, J.X.; Bocobza, S.; Franke, R.B.; Schreiber, L.; Aharoni, A.: The Arabidopsis DSO/ABCG11 transporter affects cutin metabolism in reproductive organs and suberin in roots. Mol. Plant. 3, 563–575 (2010). https://doi.org/10.1093/mp/ssp103

    Article  Google Scholar 

  14. Ahmad, H.M.; Mahmood-ur-Rahman, F.; Azeem, T.; Shaheen, M.A.: Irshad, Genome-Wide analysis of long chain Acyl-CoA synthetase (LACS) genes in sunflower (Helianthus annuus) suggests their role in drought stress. Int. J. Agric. Biol. 24, 863–870 (2020). https://doi.org/10.17957/IJAB/15.1510

    Article  Google Scholar 

  15. Yang, T.; Li, Y.; Liu, Y.; He, L.; Liu, A.; Wen, J.; Mysore, K.S.; Tadege, M.; Chen, J.: The 3-ketoacyl-CoA synthase WFL is involved in lateral organ development and cuticular wax synthesis in Medicago truncatula. Plant Mol. Biol. 105, 193–204 (2021). https://doi.org/10.1007/s11103-020-01080-1

    Article  Google Scholar 

  16. Hen-Avivi, S.; Lashbrooke, J.; Costa, F.; Aharoni, A.: Scratching the surface: genetic regulation of cuticle assembly in fleshy fruit. J. Exp. Bot. 65, 4653–4664 (2014). https://doi.org/10.1093/jxb/eru225

    Article  Google Scholar 

  17. Hen-Avivi, S.; Savin, O.; Racovita, R.C.; Lee, W.-S.; Adamski, N.M.; Malitsky, S.; Almekias-Siegl, E.; Levy, M.; Vautrin, S.; Bergès, H.; Friedlander, G.; Kartvelishvily, E.; Ben-Zvi, G.; Alkan, N.; Uauy, C.; Kanyuka, K.; Jetter, R.; Distelfeld, A.; Aharoni, A.: A metabolic gene cluster in the wheat W1 and the barley Cer-cqu loci determines β-diketone biosynthesis and glaucousness. Plant Cell (2016). https://doi.org/10.1105/tpc.16.00197

    Article  Google Scholar 

  18. Shepherd, T.; Wynne-Griffiths, D.: The effects of stress on plant cuticular waxes. New Phytol. 171, 469–499 (2006). https://doi.org/10.1111/j.1469-8137.2006.01826.x

    Article  Google Scholar 

  19. Wójcicka, A.: Surface waxes as a plant defense barrier towards grain aphid, Acta Biol. Cracoviensias. Bot. 57 (2015). doi:https://doi.org/10.1515/abcsb-2015-0012.

  20. Xue, D.; Zhang, X.; Lu, X.; Chen, G.; Chen, Z.-H.; Zhang, X.; Lu, X.; Chen, G.: Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front. Plant Sci. (2017). https://doi.org/10.3389/fpls.2017.00621

    Article  Google Scholar 

  21. Jenks, M.A.; Rich, P.J.; Ashworth, E.N.: Involvement of cork cells in the secretion of epicuticular wax filaments on Sorghum bicolor (L) moench. Int. J. Plant Sci. 155, 506–518 (1994). https://doi.org/10.1086/297190

    Article  Google Scholar 

  22. Vogg, G.; Fischer, S.; Leide, J.; Emmanuel, E.; Jetter, R.; Levy, A.A.; Riederer, M.: Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid -ketoacyl-CoA synthase. J. Exp. Bot. 55, 1401–1410 (2004). https://doi.org/10.1093/jxb/erh149

    Article  Google Scholar 

  23. Lee, S.B.; Suh, M.C.: Cuticular wax biosynthesis is up-regulated by the myb94 transcription factor in arabidopsis. Plant Cell Physiol. 56, 48–60 (2015). https://doi.org/10.1093/pcp/pcu142

    Article  Google Scholar 

  24. Monneveux, P.; Reynolds, M.P.; Gonzalez-Santoyo, H.; Pena, R.J.; Mayr, L.; Zapata, F.: Relationships between grain yield, flag leaf morphology, carbon isotope discrimination and ash content in irrigated wheat. J. Agron. Crop Sci. 190, 395–401 (2004). https://doi.org/10.1111/j.1439-037X.2004.00116.x

    Article  Google Scholar 

  25. Guo, J.; Xu, W.; Yu, X.; Shen, H.; Li, H.; Cheng, D.; Liu, A.; Liu, J.; Liu, C.; Zhao, S.; Song, J.: Cuticular wax accumulation is associated with drought tolerance in wheat near-isogenic lines. Front. Plant Sci. (2016). https://doi.org/10.3389/fpls.2016.01809

    Article  Google Scholar 

  26. Johnson, D.A.; Richards, R.A.; Turner, N.C.: YYield, water relations, gas exchange, and surface reflectances of near-isogenic wheat lines differing in glaucousness1. Crop Sci. 23, 318 (1983). https://doi.org/10.2135/cropsci1983.0011183X002300020033x

    Article  Google Scholar 

  27. Aharoni, A.: The SHINE clade of AP2 domain transcription factors activates wax biosynthesis. Alters cuticle properties, and confers drought tolerance when overexpressed in arabidopsis. PLANT CELL ONLINE. 16, 2463–2480 (2004). https://doi.org/10.1105/tpc.104.022897

    Article  Google Scholar 

  28. Jenks, M.A.; Eigenbrode, S.D.; Lemieux, B.: Cuticular waxes of arabidopsis. Arab. B. 1, e0016 (2002). https://doi.org/10.1199/tab.0016

    Article  Google Scholar 

  29. Jiang, Q.; Zhang, J.-Y.; Guo, X.; Monteros, M.J.; Wang, Z.-Y.: Physiological characterization of transgenic alfalfa (Medicago sativa) plants for improved drought tolerance. Int. J. Plant Sci. 170, 969–978 (2009). https://doi.org/10.1086/600138

    Article  Google Scholar 

  30. Ni, Y.; Guo, Y.J.; Guo, Y.J.; Han, L.; Tang, H.; Conyers, M.: Leaf cuticular waxes and physiological parameters in alfalfa leaves as influenced by drought. Photosynthetica 50, 458–466 (2012). https://doi.org/10.1007/s11099-012-0055-1

    Article  Google Scholar 

  31. Lee, S.B.; Kim, H.; Kim, R.J.; Suh, M.C.: Overexpression of Arabidopsis MYB96 confers drought resistance in Camelina sativa via cuticular wax accumulation. Plant Cell Rep. 33, 1535–1546 (2014). https://doi.org/10.1007/s00299-014-1636-1

    Article  Google Scholar 

  32. Islam, M.A.; Du, H.; Ning, J.; Ye, H.; Xiong, L.: Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Mol. Biol. 70, 443–456 (2009). https://doi.org/10.1007/s11103-009-9483-0

    Article  Google Scholar 

  33. González, A.; Ayerbe, L.: Effect of terminal water stress on leaf epicuticular wax load, residual transpiration and grain yield in barley. Euphytica 172, 341–349 (2010). https://doi.org/10.1007/s10681-009-0027-0

    Article  Google Scholar 

  34. James F Hancock, Plant evolution and the origin of crop species, CABI, Wallingford, 2012. doi:https://doi.org/10.1079/9781845938017.0000.

  35. Rosa, P.M.; Antoniassi, R.; Freitas, S.C.; Bizzo, H.R.; Zanotto, D.L.; Oliveira, M.F.; Castiglion, V.B.R.: Chemical composition of Brazilian sunflower varieties. Helia 32, 145–155 (2009). https://doi.org/10.2298/HEL0950145R

    Article  Google Scholar 

  36. Alberio, C.; Izquierdo, N.G.; Aguirrezábal, L.A.N.: Sunflower crop physiology and agronomy, in: Sunflower, Elsevier (2015) pp. 53–91. doi:https://doi.org/10.1016/B978-1-893997-94-3.50009-X.

  37. Flagella, Z.; Rotunno, T.; Tarantino, E.; Di Caterina, R.; De Caro, A.: Changes in seed yield and oil fatty acid composition of high oleic sunflower (Helianthus annuus L) hybrids in relation to the sowing date and the water regime. Eur. J. Agron. 17, 221–230 (2002). https://doi.org/10.1016/S1161-0301(02)00012-6

    Article  Google Scholar 

  38. Oshundiya, F.O.; Olowe, V.I.O.; Sowemimo, F.A.; Odedina, J.N.: Seed yield and quality of sunflower (Helianthus annuus L) as influenced by staggered sowing and organic fertilizer application in the humid tropics. Helia (2014). https://doi.org/10.1515/helia-2014-0012

    Article  Google Scholar 

  39. Joshi, R.; Wani, S.H.; Singh, B.; Bohra, A.; Dar, Z.A.; Lone, A.A.; Pareek, A.; Singla-Pareek, S.L.: Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci (2016). https://doi.org/10.3389/fpls.2016.01029

    Article  Google Scholar 

  40. Wang, M.; Wang, Y.; Wu, H.; Xu, J.; Li, T.; Hegebarth, D.; Jetter, R.; Chen, L.; Wang, Z.: Three TaFAR genes function in the biosynthesis of primary alcohols and the response to abiotic stresses in Triticum aestivum. Sci. Rep. 6, 25008 (2016). https://doi.org/10.1038/srep25008

    Article  Google Scholar 

  41. Tátrai, Z.A.; Sanoubar, R.; Pluhár, Z.; Mancarella, S.; Orsini, F.; Gianquinto, G.: Morphological and physiological plant responses to drought stress in thymus citriodorus. Int. J. Agron. 2016, 1–8 (2016). https://doi.org/10.1155/2016/4165750

    Article  Google Scholar 

  42. Javed, I.; Awan, S.; Ahmad, H.; Rao. A.: Assesment of genetic diversity in wheat synthetic double haploids for yield and drought related traits through factor and cluster analyses. Plant Gene Trait. (2016). doi:https://doi.org/10.5376/pgt.2016.07.0003.

  43. Awan, S.I.; Ahmad, S.D.; Ali, M.A.; Ahmed, M.S.; Rao, A.: Use of multivariate analysis in determining characteristics for grain yield selection in wheat. Sarhad J. Agric. 31, 139–150 (2015). https://doi.org/10.17582/journal.sja/2015/31.2.139.150

    Article  Google Scholar 

  44. Loose, L.H.; Heldwein, A.B.; Lucas, D.D.P.; Hinnah, F.D.; Bortoluzzi, M.P.: Sunflower emergence and initial growth in soil with water excess. Eng. Agrícola. 37, 644–655 (2017). https://doi.org/10.1590/1809-4430-eng.agric.v37n4p644-655/2017

    Article  Google Scholar 

  45. Qamar, R.; Ghias, M.; Hussain, F.; Habib, S.; Razzaq, M.K.; Aslam, M.; Habib, I.: Effect of drought on morpho-physiological traits of sunflower (helianthus annuus l) hybrids and their parental inbred lines. Pakistan J. Agric. Res. (2018). https://doi.org/10.17582/journal.pjar/2018/31.2.186.193

    Article  Google Scholar 

  46. Lü, S.; Song, T.; Kosma, D.K.; Parsons, E.P.; Rowland, O.; Jenks, M.A.; Lu, S.; Song, T.; Kosma, D.K.; Parsons, E.P.; Rowland, O.; Jenks, M.A.; Lü, S.; Song, T.; Kosma, D.K.; Parsons, E.P.; Rowland, O.; Jenks, M.A.: Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis. Plant J. 59, 553–564 (2009). https://doi.org/10.1111/j.1365-313X.2009.03892.x

    Article  Google Scholar 

  47. García-Mata, C.; García Mata, C.: Lamattina, L.: Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol. 126 (2001) 1196–204. http://www.ncbi.nlm.nih.gov/pubmed/11457969.

  48. Smart, R.E.; Bingham, G.E.: Rapid estimates of relative water content. PLANT Physiol. 53, 258–260 (1974). https://doi.org/10.1104/pp.53.2.258

    Article  Google Scholar 

  49. Porra, R.J.: No Title. Photosynth. Res. 73, 149–156 (2002). https://doi.org/10.1023/A:1020470224740

    Article  Google Scholar 

  50. Bates, L.S.; Waldren, R.P.; Teare, I.D.: Rapid determination of free proline for water-stress studies. Plant Soil. 39, 205–207 (1973). https://doi.org/10.1007/BF00018060

    Article  Google Scholar 

  51. Valadez-Bustos, M.G.; Aguado-Santacruz, G.A.; Tiessen-Favier, A.; Robledo-Paz, A.; Muñoz-Orozco, A.; Rascón-Cruz, Q.; Santacruz-Varela, A.: A reliable method for spectrophotometric determination of glycine betaine in cell suspension and other systems. Anal. Biochem. 498, 47–52 (2016). https://doi.org/10.1016/j.ab.2015.12.015

    Article  Google Scholar 

  52. Dhindsa, R.S.; Plumb-Dhindsa, P.; Thorpe, T.A.: Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32, 93–101 (1981). https://doi.org/10.1093/jxb/32.1.93

    Article  Google Scholar 

  53. Sun, L.; Xu, X.; Jiang, Y.; Zhu, Q.; Yang, F.; Zhou, J.; Yang, Y.; Huang, Z.; Li, A.; Chen, L.; Tang, W.; Zhang, G.; Wang, J.; Xiao, G.; Huang, D.; Chen, C.: Genetic diversity, rather than cultivar type, determines relative grain Cd accumulation in hybrid rice. Front. Plant Sci. (2016). https://doi.org/10.3389/fpls.2016.01407

    Article  Google Scholar 

  54. Aebi, H.: Catalase in vitro. Methods Enzymol. 105 (1984) 121–6. http://www.ncbi.nlm.nih.gov/pubmed/6727660.

  55. Lokesh, U.; Venkatesh, B.; Kiranmai, K.; Nareshkumar, A.; Amarnathareddy, V.; Rao, G.L.; Anthony-Johnson, A.M.; Pandurangaiah, M.; Sudhakar, C.: Overexpression of ß-Ketoacyl Co-A synthase1 gene improves tolerance of drought susceptible groundnut (Arachis hypogaea L) Cultivar K-6 by increased leaf epicuticular wax accumulation. Front. Plant Sci. (2019). https://doi.org/10.3389/fpls.2018.01869

    Article  Google Scholar 

  56. Reddy, P.S. (2019) Breeding for abiotic stress resistance in sorghum. In: Breed. Sorghum Divers. End Uses, Elsevier, pp 325–340. doi:https://doi.org/10.1016/B978-0-08-101879-8.00020-6.

  57. Blum, A.: Plant Breeding for Water-Limited Environments, Springer. N. Y. (2011). https://doi.org/10.1007/978-1-4419-7491-4

  58. Subbarao, G.V.; Nam, N.H.; Chauhan, Y.S.; Johansen, C.: Osmotic adjustment, water relations and carbohydrate remobilization in pigeonpea under water deficits. J. Plant Physiol. 157, 651–659 (2000). https://doi.org/10.1016/S0176-1617(00)80008-5

    Article  Google Scholar 

  59. Chaves, M.M.; Flexas, J.; Pinheiro, C.: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103, 551–560 (2009). https://doi.org/10.1093/aob/mcn125

    Article  Google Scholar 

  60. Zhang, J.; Nguyen, H.T.; Blum, A.: Genetic analysis of osmotic adjustment in crop plants. J. Exp. Bot. 50, 291–302 (1999). https://doi.org/10.1093/jxb/50.332.291

    Article  Google Scholar 

  61. Hussain, H.A.; Hussain, S.; Khaliq, A.; Ashraf, U.; Anjum, S.A.; Men, S.; Wang, L.: Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front. Plant Sci. (2018). https://doi.org/10.3389/fpls.2018.00393

    Article  Google Scholar 

  62. Bo, W.; Fu, B.; Qin, G.; Xing, G.; Wang, Y.: Evaluation of drought resistance in Iris germanica L. based on subordination function and principal component analysis. Emirates J. Food Agric. (2017). https://doi.org/10.9755/ejfa.2017.v29.i10.1260

    Article  Google Scholar 

  63. Ahmed, K.; Shabbir, G.; Ahmed, M.; Shah, K.N.: Phenotyping for drought resistance in bread wheat using physiological and biochemical traits. Sci. Total Environ. 729, 139082 (2020). https://doi.org/10.1016/j.scitotenv.2020.139082

    Article  Google Scholar 

  64. Teulat, B.; Zoumarou-Wallis, N.; Rotter, B.; Ben-Salem, M.; Bahri, H.; This, D.: QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor. Appl. Genet. 108, 181–188 (2003). https://doi.org/10.1007/s00122-003-1417-7

    Article  Google Scholar 

  65. Ghafoor, K.; Choi, Y.H.; Jeon, J.Y.; Jo, I.H.: Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape ( Vitis vinifera ) seeds. J. Agric. Food Chem. 57, 4988–4994 (2009). https://doi.org/10.1021/jf9001439

    Article  Google Scholar 

  66. Bouzoubaâ, Z.; El-Mousadik, A.; Belahsen, Y.: Variation in amounts of epicuticular wax on leaves of Argania spinosa (L.) Skeels. Acta Bot. Gall. 153, 167–177 (2006). https://doi.org/10.1080/12538078.2006.10515535

    Article  Google Scholar 

  67. Jenks, M.A.; Andersen, L.; Teusink, R.S.; Williams, M.H.: Leaf cuticular waxes of potted rose cultivars as affected by plant development, drought and paclobutrazol treatments. Physiol. Plant. 112, 62–70 (2001). https://doi.org/10.1034/j.1399-3054.2001.1120109.x

    Article  Google Scholar 

  68. Cameron, K.D.: Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. PLANT Physiol. 140, 176–183 (2005). https://doi.org/10.1104/pp.105.069724

    Article  Google Scholar 

  69. Bourdenx, B.; Bernard, A.; Domergue, F.; Pascal, S.; Léger, A.; Roby, D.; Pervent, M.; Vile, D.; Haslam, R.P.; Napier, J.A.; Lessire, R.; Joubès, J.; Leger, A.; Roby, D.; Pervent, M.; Vile, D.; Haslam, R.P.; Napier, J.A.; Lessire, R.; Joubes, J.: Overexpression of arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. PLANT Physiol. 156, 29–45 (2011). https://doi.org/10.1104/pp.111.172320

    Article  Google Scholar 

  70. Sánchez, F.J.; Manzanares, M.; de Andrés, E.F.; Tenorio, J.L.; Ayerbe, L.: Residual transpiration rate, epicuticular wax load and leaf colour of pea plants in drought conditions. Influence on harvest index and canopy temperature. Eur. J. Agron. 15, 57–70 (2001). https://doi.org/10.1016/S1161-0301(01)00094-6

    Article  Google Scholar 

  71. Jordan, W.R.; Shouse, P.J.; Blum, A.; Miller, F.R.; Monk, R.L.: Environmental physiology of sorghum II epicuticular wax load and cuticular transpiration1. Crop Sci. 24, 1168 (1984). https://doi.org/10.2135/cropsci1984.0011183X002400060038x

    Article  Google Scholar 

  72. Premachandra, G.S.; Saneoka, H.; Fujita, K.; Ogata, S.: Leaf water relations, osmotic adjustment, cell membrane stability, epicuticular wax load and growth as affected by increasing water deficits in sorghum. J. Exp. Bot. 43, 1569–1576 (1992). https://doi.org/10.1093/jxb/43.12.1569

    Article  Google Scholar 

  73. Sarwar, Y.; Shahbaz, M.: Modulation in growth, photosynthetic pigments, gas exchange attributes and inorganic ions in sunflower (Helianthus annuus l) by strigolactones (GR24) achene priming under saline conditions. Pakistan J. Bot. (2020). https://doi.org/10.30848/PJB2020-1(4)

    Article  Google Scholar 

  74. S. Fan, Z. Yuan, L. Feng, X. Wang, X. Ding, H. Zhen, [Effects of drought stress on physiological and biochemical parameters of Dahlia pinnata]., Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 22 (2011) 651–7. http://www.ncbi.nlm.nih.gov/pubmed/21657020.

  75. Hall, D.M.; Jones, R.L.: Physiological significance of surface wax on leaves. Nature 191, 95–96 (1961). https://doi.org/10.1038/191095a0

    Article  Google Scholar 

  76. Fernández, V.; Bahamonde, H.A.; Javier-Peguero-Pina, J.; Gil-Pelegrín, E.; Sancho-Knapik, D.; Gil, L.; Goldbach, H.E.; Eichert, T.: Physico-chemical properties of plant cuticles and their functional and ecological significance. J. Exp. Bot. (2017). https://doi.org/10.1093/jxb/erx302

    Article  Google Scholar 

  77. Guo, R.; Shi, L.; Yan, C.; Zhong, X.; Gu, F.; Liu, Q.; Xia, X.; Li, H.: Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings. BMC Plant Biol. 17, 41 (2017). https://doi.org/10.1186/s12870-017-0994-6

    Article  Google Scholar 

  78. von Wettstein-Knowles, P.: The polyketide components of waxes and the cer-cqu gene cluster encoding a novel polyketide synthase, the β-Diketone synthase DKS. Plants 6, 28 (2017). https://doi.org/10.3390/plants6030028

    Article  Google Scholar 

  79. Bondada, B.R.; Oosterhuis, D.M.; Murphy, J.B.; Kim, K.S.: Effect of water stress on the epicuticular wax composition and ultrastructure of cotton (Gossypium hirsutum L.) leaf, bract, and boll. Environ. Exp. Bot. 36, 61–69 (1996). https://doi.org/10.1016/0098-8472(96)00128-1

    Article  Google Scholar 

  80. Zhang, J.-Y.; Broeckling, C.D.; Blancaflor, E.B.; Sledge, M.K.; Sumner, L.W.; Wang, Z.-Y.: Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J. 42, 689–707 (2005). https://doi.org/10.1111/j.1365-313X.2005.02405.x

    Article  Google Scholar 

  81. Yang, J.; Isabel-Ordiz, M.; Jaworski, J.G.; Beachy, R.N.: Induced accumulation of cuticular waxes enhances drought tolerance in Arabidopsis by changes in development of stomata. Plant Physiol. Biochem. 49, 1448–1455 (2011). https://doi.org/10.1016/j.plaphy.2011.09.006

    Article  Google Scholar 

  82. de Araújo Silva, M.M.; Ferreira, L.T.; de Vasconcelos, F.M.T.; Willadino, L.; Camara, T.R.; dos Santos, D.Y.A.C.; de Oliveira, A.F.M.: Water stress-induced responses in the growth, cuticular wax composition, chloroplast pigments and soluble protein content, and redox metabolism of two genotypes of Ricinus communis L. J. Plant Growth Regul. 40, 342–352 (2021). https://doi.org/10.1007/s00344-020-10103-6

    Article  Google Scholar 

  83. Zhang, Z.; Wei, W.; Zhu, H.; Challa, G.S.; Bi, C.; Trick, H.N.; Li, W.: W3 is a new wax locus that is essential for biosynthesis of β-diketone, development of glaucousness, and reduction of cuticle permeability in common wheat. PLoS ONE 10, e0140524 (2015). https://doi.org/10.1371/journal.pone.0140524

    Article  Google Scholar 

  84. Kosma, D.K.; Bourdenx, B.; Bernard, A.; Parsons, E.P.; Lu, S.; Joubes, J.; Jenks, M.A.: The impact of water deficiency on leaf cuticle lipids of arabidopsis. PLANT Physiol. 151, 1918–1929 (2009). https://doi.org/10.1104/pp.109.141911

    Article  Google Scholar 

  85. Racovita, R.C.; Hen-Avivi, S.; Fernandez-Moreno, J.-P.; Granell, A.; Aharoni, A.; Jetter, R.: Composition of cuticular waxes coating flag leaf blades and peduncles of Triticum aestivum cv. Bethlehem. Phytochemistry 130, 182–192 (2016). https://doi.org/10.1016/j.phytochem.2016.05.003

    Article  Google Scholar 

  86. Bauer, S.; Schulte, E.; Thier, H.-P.: Composition of the surface wax from tomatoes. Eur. Food Res. Technol. 219, 487–491 (2004). https://doi.org/10.1007/s00217-004-0944-z

    Article  Google Scholar 

  87. Chu, W.; Gao, H.; Cao, S.; Fang, X.; Chen, H.; Xiao, S.: Composition and morphology of cuticular wax in blueberry (Vaccinium spp.) fruits. Food Chem. 219, 436–442 (2017). https://doi.org/10.1016/j.foodchem.2016.09.186

    Article  Google Scholar 

  88. Yan, Y.; Liu, Q.; Zhang, Q.; Ding, Y.; Li, Y.: Adaptation of dominant species to drought in the inner mongolia grassland – species level and functional type level analysis. Front. Plant Sci. (2019). https://doi.org/10.3389/fpls.2019.00231

    Article  Google Scholar 

  89. Hussain, M.M.; Rauf, S.; Riaz, M.A.; Al-Khayri, J.M.; Monneveux, P.: Determination of drought tolerance related traits in Helianthus argophyllus, Helianthus annuus, and their hybrids. Breed. Sci. 67, 257–267 (2017). https://doi.org/10.1270/jsbbs.16095

    Article  Google Scholar 

  90. Bacharou Falke, A.; Hamidou, F.; Halilou, O.; Harou, A.: Assessment of groundnut elite lines under drought conditions and selection of tolerance associated traits. Agric Adv (2019). https://doi.org/10.1155/2019/3034278

    Article  Google Scholar 

  91. Xue, L.; Ren, H.; Long, W.; Leng, X.; Wang, J.; Yao, X.; Li, S.: Ecophysiological Responses of Calcicole Cyclobalanopsis glauca (Thunb.) Oerst. to Drought Stress and Calcium Supply. Forests 9, 667 (2018). https://doi.org/10.3390/f9110667

    Article  Google Scholar 

  92. Zahid, Z.; Khan, M.K.R.; Hameed, A.; Akhtar, M.; Ditta, A.; Hassan, H.M.; Farid, G.: Dissection of Drought Tolerance in Upland Cotton Through Morpho-Physiological and Biochemical Traits at Seedling Stage. Front. Plant Sci. (2021). https://doi.org/10.3389/fpls.2021.627107

    Article  Google Scholar 

  93. Robredo, A.; Pérez-López, U.; Lacuesta, M.; Mena-Petite, A.; Muñoz-Rueda, A.: Influence of water stress on photosynthetic characteristics in barley plants under ambient and elevated CO2 concentrations. Biol. Plant. 54, 285–292 (2010). https://doi.org/10.1007/s10535-010-0050-y

    Article  Google Scholar 

  94. Tezara, W.; Mitchell, V.; Driscoll, S.P.; Lawlor, D.W.: Effects of water deficit and its interaction with CO(2) supply on the biochemistry and physiology of photosynthesis in sunflower. J. Exp. Bot. 53, 1781–1791 (2002). https://doi.org/10.1093/jxb/erf021

    Article  Google Scholar 

  95. Ilyas, M.; Khan, S.A.; Awan, S.I.; Rehman, S.; Ahmed, W.; Khan, M.R.; Naz, R.M.M.; Khan, M.M.U.; Hafeez, S.: Preponderant of dominant gene action in maize revealed by generation mean analysis under natural and drought stress conditions. Sarhad J. Agric (2020). https://doi.org/10.17582/journal.sja/2020/36.1.198.209

    Article  Google Scholar 

  96. Rochaix, J.-D.: Assembly of the photosynthetic apparatus. Plant Physiol. 155, 1493–1500 (2011). https://doi.org/10.1104/pp.110.169839

    Article  Google Scholar 

  97. Chaves, M.M.: Effects of water deficits on carbon assimilation. J. Exp. Bot. 42, 1–16 (1991). https://doi.org/10.1093/jxb/42.1.1

    Article  Google Scholar 

  98. Resende, C.F.; Pacheco, V.S.; Dornellas, F.F.; Oliveira, A.M.S.; Freitas, J.C.E.; Peixoto, P.H.P.: Responses of antioxidant enzymes, photosynthetic pigments and carbohydrates in micropropagated Pitcairnia encholirioides L.B. Sm. (Bromeliaceae) under ex vitro water deficit and after rehydration. Braz. J. Biol. 79, 53–62 (2019). https://doi.org/10.1590/1519-6984.175284

    Article  Google Scholar 

  99. Chimenti, C.A.; Marcantonio, M.; Hall, A.J.: Divergent selection for osmotic adjustment results in improved drought tolerance in maize (Zea mays L.) in both early growth and flowering phases. F. Crop. Res. 95, 305–315 (2006). https://doi.org/10.1016/j.fcr.2005.04.003

    Article  Google Scholar 

  100. Kiani, S.P.; Talia, P.; Maury, P.; Grieu, P.; Heinz, R.; Perrault, A.; Nishinakamasu, V.; Hopp, E.; Gentzbittel, L.; Paniego, N.; Sarrafi, A.: Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments. Plant Sci. 172, 773–787 (2007). https://doi.org/10.1016/j.plantsci.2006.12.007

    Article  Google Scholar 

  101. Abrahám, E.; Rigó, G.; Székely, G.; Nagy, R.; Koncz, C.; Szabados, L.: Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol. Biol. 51, 363–372 (2003). https://doi.org/10.1023/a:1022043000516

    Article  Google Scholar 

  102. Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A.: Role of proline under changing environments. Plant Signal. Behav. 7, 1456–1466 (2012). https://doi.org/10.4161/psb.21949

    Article  Google Scholar 

  103. Pérez-Pérez, J.G.; Robles, J.M.; Tovar, J.C.; Botía, P.: Response to drought and salt stress of lemon ‘Fino 49’ under field conditions: Water relations, osmotic adjustment and gas exchange. Sci. Hortic. 122, 83–90 (2009). https://doi.org/10.1016/j.scienta.2009.04.009

    Article  Google Scholar 

  104. Faize, M.; Burgos, L.; Faize, L.; Piqueras, A.; Nicolas, E.; Barba-Espin, G.; Clemente-Moreno, M.J.; Alcobendas, R.; Artlip, T.; Hernandez, J.A.: Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J. Exp. Bot. 62, 2599–2613 (2011). https://doi.org/10.1093/jxb/erq432

    Article  Google Scholar 

  105. Vassilevska-Ivanova, R.D.; Stancheva, I.; Geneva, M.; Tcekova, Z.: Evaluating an Interspecific Helianthus annuus × Helianthus nuttallii Line for Use in Sunflower Breeding Program, Turkish. J. Agric. - Food Sci. Technol. 6, 1684 (2018). https://doi.org/10.24925/turjaf.v6i12.1684-1689.1361

    Article  Google Scholar 

  106. Bhardwaj, J.; Yadav, S.K.: Comparative study on biochemical parameters and antioxidant enzymes in a drought tolerant and a sensitive variety of horsegram (macrotyloma uniflorum) under drought stress. Am. J. Plant Physiol. 7, 17–29 (2012). https://doi.org/10.3923/ajpp.2012.17.29

    Article  Google Scholar 

  107. Liu, J.; Hua, W.; Hu, Z.; Yang, H.; Zhang, L.; Li, R.; Deng, L.; Sun, X.; Wang, X.; Wang, H.: Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc. Natl. Acad. Sci. 112, E5123–E5132 (2015). https://doi.org/10.1073/pnas.1502160112

    Article  Google Scholar 

  108. Arabzadeh, N.; Khavarinej, R.A.; Emadian, S.F.; Heydari-Sh, H.: A study of the impact of pruning on the growth and vigority of the hand-planted-haloxylon trees in Kerman, Iran. Asian J. Plant Sci. 8, 474–482 (2009). https://doi.org/10.3923/ajps.2009.474.482

    Article  Google Scholar 

  109. Mittler, R.: Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15–19 (2006). https://doi.org/10.1016/j.tplants.2005.11.002

    Article  Google Scholar 

  110. Pinheiro, C.; Chaves, M.M.: Photosynthesis and drought: can we make metabolic connections from available data? J. Exp. Bot. 62, 869–882 (2011). https://doi.org/10.1093/jxb/erq340

    Article  Google Scholar 

  111. Nounjan, N.; Nghia, P.T.; Theerakulpisut, P.: Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J. Plant Physiol. 169, 596–604 (2012). https://doi.org/10.1016/j.jplph.2012.01.004

    Article  Google Scholar 

  112. Sofo, A.; Scopa, A.; Nuzzaci, M.; Vitti, A.: Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int. J. Mol. Sci. 16, 13561–13578 (2015). https://doi.org/10.3390/ijms160613561

    Article  Google Scholar 

  113. Mittler, R.; Vanderauwera, S.; Suzuki, N.; Miller, G.; Tognetti, V.B.; Vandepoele, K.; Gollery, M.; Shulaev, V.; Van Breusegem, F.: ROS signaling: the new wave? Trends Plant Sci. 16, 300–309 (2011). https://doi.org/10.1016/j.tplants.2011.03.007

    Article  Google Scholar 

  114. Saed-Moucheshi, A.; Pessarakli, M.; Heidari, B.: Comparing relationships among yield and its related traits in mycorrhizal and nonmycorrhizal inoculated wheat cultivars under different water regimes using multivariate statistics. Int. J. Agron. 2013, 1–14 (2013). https://doi.org/10.1155/2013/682781

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Mr. Fida Hussain, Research officer, Ayoub Agriculture Research Institute Faisalabad, Pakistan for the provision of sunflower genotypes.

Funding

The publication of the present work is supported by the Natural Science Basic Research Program of Shaanxi Province (grant no. 2018JQ5218) and the National Natural Science Foundation of China (51809224), Top Young Talents of Shaanxi Special Support Program.

Author information

Authors and Affiliations

Authors

Contributions

HMA and MR conceived the idea and performed experimental work. MR supervised the experiment. SF and FA analyzed the data and HMA wrote the manuscript. HMA, XW, SAK and TS provide with technical assistance and critically analyzed the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mahmood-Ur-Rahman.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, H.M., Wang, X., Mahmood-Ur-Rahman et al. Morphological and Physiological Response of Helianthus annuus L. to Drought Stress and Correlation of Wax Contents for Drought Tolerance Traits. Arab J Sci Eng 47, 6747–6761 (2022). https://doi.org/10.1007/s13369-021-06098-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06098-1

Keywords

Navigation