Skip to main content
Log in

A Novel Augmented Fractional-Order Fuzzy Controller for Enhanced Robustness in Nonlinear and Uncertain Systems with Optimal Actuator Exertion

  • Research Article-Systems Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

An appropriate balance between the controller’s performance and its robustness is a complex design challenge. In order to enhance the control system performance, vigorous and rapid variations in controller output are often employed; however, this poses a critical challenge for practical implementations of the control schemes, as it may affect the actuator badly and may reduce its lifetime. To handle this issue, the current work presents an innovative control structure that aims to strike an apt balance between the control output variability while maintaining the desired control performance. The proposed control scheme exploits the abilities of fuzzy logic to cope with uncertainties in the system and along with the use of fractional calculus to enhance the control performance. Further, to evaluate the performance of the proposed improved fractional-order fuzzy controller (IFOFC), extensive simulation studies have been carried out on a multi-input–multi-output nonlinear system for a wide variety of test scenarios. An exhaustive comparative study with an inline state-of-art controller, i.e., fractional-order fuzzy PID (FOFPID) controller has also been carried out on two interesting performance measures. These performance measures include integral of time-weighted absolute error (ITAE) and another measure which corresponds to undesirable variations in the controller output, i.e., integral of the absolute change of torque (IACT). Based on the detailed simulation studies, it was found that the proposed control structure provides a fair balance between controller output aggression and control performance and also completely outperformed the FOFPID controller, even under large parametric variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Kürkçü, B.; Kasnakoğlu, C.: Robust Autopilot Design Based on a Disturbance/Uncertainty/Coupling Estimator. IEEE Trans. Control Syst. Technol. 27(6), 2622–2629 (2019)

    Article  Google Scholar 

  2. Mao, Q.; Dou, L.; Zong, Q.; Ding, Z.: Attitude controller design for reusable launch vehicles during reentry phase via compound adaptive fuzzy H-infinity control. Aerosp. Sci. Technol. 72, 36–48 (2018)

    Article  Google Scholar 

  3. Zhang, H.; Liu, J.; Xu, S.: H-infinity load frequency control of networked power systems via an event-triggered scheme. IEEE Trans. Industr. Electron. 67(8), 7104–7113 (2019)

    Article  Google Scholar 

  4. Ali, A.; Majhi, S.: PID controller tuning for integrating processes. ISA Trans. 49(1), 70–78 (2010)

    Article  Google Scholar 

  5. Ali, A.; Majhi, S.: Integral criteria for optimal tuning of PI/PID controllers for integrating processes. Asian J. Control 13, 328–337 (2011)

    Article  MathSciNet  Google Scholar 

  6. Visioli, A.: Optimal tuning of PID controllers for integral and unstable processes. IEE Proc. Control Theory Appl. 148, 180–184 (2001)

    Article  Google Scholar 

  7. Rao, A.S.; Rao, V.S.R.; Chidambaram, M.: Direct synthesis-based controller design for integrating processes with time delay. J. Frankl. Inst. 346, 38–56 (2009)

    Article  MathSciNet  Google Scholar 

  8. Ibanez, C.A.; Suarez-Castanon, M.S.: A trajectory planning based controller to regulate an uncertain 3D overhead crane system. Int. J. Appl. Math. Comput. Sci. 29(4), 693–702 (2019)

    Article  MathSciNet  Google Scholar 

  9. Sánchez, J.R.G., et al.: Robust switched tracking control for wheeled mobile robots considering the actuators and drivers. Sensors 18, 4316 (2018)

    Article  Google Scholar 

  10. Rubio, J.D.J., et al.: Structure regulator for the perturbations attenuation in a quadrotor. IEEE Access 7(1), 138244–138252 (2019)

    Article  Google Scholar 

  11. Karunagaran, G.; Wenjian, C.: The parallel control structure for transparent online tuning. J. Process Control 21(7), 1072–1079 (2011)

    Article  Google Scholar 

  12. Goyal, V.; Mishra, P.; Deolia, V.K.: A robust fractional-order parallel control structure for flow control using a pneumatic control valve with nonlinear and uncertain dynamics. Arab. J. Sci. Eng. 44(3), 2597–2611 (2018)

    Article  Google Scholar 

  13. Goyal, V.; Mishra, P.; Shukla, A.; Deolia, V.K.; Varshney, A.: A fractional-order parallel control structure tuned with meta-heuristic optimization algorithms for enhanced robustness. J. Electr Eng. 70(1), 16–24 (2019)

    Google Scholar 

  14. Jantzen, J.: Foundations of fuzzy controllers. Wiley, Canada (2007)

    Book  Google Scholar 

  15. Ardeshiri, R.R.; Khooban, M.H.; Noshadi, A., et al.: Robotic manipulator control based on an optimal fractional-order fuzzy PID approach: SiL real-time simulation. Soft Comput. 24, 3849–3860 (2020)

    Article  Google Scholar 

  16. Mamdani, E.H.: Applications of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans. Comput. 26(12), 1182–1191 (1977)

    Article  Google Scholar 

  17. Pan, Y.; Yang, G.H.: Event-triggered fuzzy control for nonlinear networked control systems. Fuzzy Sets Syst. 329, 91–107 (2017)

    Article  MathSciNet  Google Scholar 

  18. Li, W.; Chang, X.G.; Wahl, F.M.; Farrell, J.: Tracking control of a manipulator under uncertainty by Fuzzy P+ID controller. Fuzzy Sets Syst. 122, 125–137 (2001)

    Article  MathSciNet  Google Scholar 

  19. Kumar, V.; Nakra, B.C.; Mittal, A.P.: Some Investigations on fuzzy P + Fuzzy I + fuzzy D controller for non-stationary process. Int. J. Autom. Comput. 9(5), 449–458 (2012)

    Article  Google Scholar 

  20. Mishra, P.; Kumar, V.; Rana, K.P.S.: A fractional-order fuzzy PID controller for binary distillation column control. Expert Syst. Appl. 42(22), 8533–8549 (2015)

    Article  Google Scholar 

  21. Nithilasaravanan, K.; Thakwani, N.; Mishra, P.; Kumar, V.; Rana, K.P.S.: Efficient control of integrated power system using self-tuned fractional-order fuzzy PID controller. Neural Comput. Appl. 31(8), 4137–4155 (2019)

    Article  Google Scholar 

  22. Das, S.; Pan, I.; Gupta, A.: A novel fractional-order fuzzy PID controller and its optimal time domain tuning based on integral performance indices. Eng. Appl. Artif. Intell. 25, 430–442 (2012)

    Article  Google Scholar 

  23. Das, S.; Pan, I.; Das, S.: Performance comparison of optimal fractional-orderhybrid fuzzy PID controllers for handling oscillatory fractional-order processes with dead time. ISA Trans. 52, 550–566 (2013)

    Article  Google Scholar 

  24. Kumar, V.; Rana, K.P.S.; Kumar, J.; Mishra, P.: A robust fractional-order fuzzy P + fuzzy I + fuzzy D controller for nonlinear and uncertain system. Int. J. Autom. Comput. 14, 474–488 (2017)

    Article  Google Scholar 

  25. Mishra, P.; Kumar, V.; Rana, K.P.S.: Robust speed control of hybrid electric vehicle using fractional-order fuzzy PD and PI controllers in cascade control loop. J. Franklin Inst. 353(8), 1713–1741 (2016)

    Article  MathSciNet  Google Scholar 

  26. Sharma, R.; Rana, K.P.S.; Kumar, V.: Performance analysis of fractional-order fuzzy PID controllers applied to a robotic manipulator. Expert Syst. Appl. 41, 11335–11346 (2014)

    Google Scholar 

  27. Kanagaraj, N.: Design and Performance Evaluation of Fuzzy Variable fractional-order [PI]λDµ Controller for a Class of First-Order Delay Time Systems. Stud. Inform. Control 28(4), 443–452 (2019)

    Article  MathSciNet  Google Scholar 

  28. Kumar, V.; Rana, K.P.S.: Nonlinear adaptive fractional-order fuzzy PID control of a 2-link planar rigid manipulator with payload. J. Franklin Inst. 354(2), 993–1022 (2017)

    Article  MathSciNet  Google Scholar 

  29. Kumar, V.; Rana, K.P.S.; Kumar, J.; Mishra P.: Self-Tuned Robust Fractional-order Fuzzy PD Controller for Uncertain Nonlinear Active Suspension System, Neural Comput. Applic., 1–17, 2016.

  30. Kumar, J.; Kumar, V.; Rana, K.P.S.: A fractional-order fuzzy PD+I controller for three-link electrically driven rigid robotic manipulator system. J. Intell. Fuzzy Syst. 35(5), 5287–5299 (2018)

    Article  Google Scholar 

  31. Kumar, J.; Kumar, V.; Rana, K.P.S.: Design of Robust Fractional-order Fuzzy Sliding Mode PID Controller for Two-link Robotic Manipulator System. J. Intell. Fuzzy Syst 35(5), 5301–5315 (2018)

    Article  Google Scholar 

  32. Kumar, J.; Kumar, V.; Rana, K.P.S.: Fractional-order self-tuned fuzzy PID controller for three-link robotic manipulator system. Neural Comput. Appl. 32, 7235–7257 (2020)

    Article  Google Scholar 

  33. Sharma, R.; Bhasin, S.; Gaur, P.; Joshi, D.: A switching based collaborative fractional-order fuzzy logic controllers for robotic manipulator. Appl. Math. Model. 73, 228–246 (2019)

    Article  MathSciNet  Google Scholar 

  34. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)

    MathSciNet  MATH  Google Scholar 

  35. Yang, X.S.; Deb, S.: Multi-objective cuckoo search for design optimization. Comput. Oper. Res. 40(6), 1616–1624 (2013)

    Article  MathSciNet  Google Scholar 

  36. Martinez, D.I., et al.: Stabilization of Robots with a Regulator Containing the Sigmoid Mapping. IEEE Access 8(1), 89479–89488 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, A., Mishra, P. & Goyal, V. A Novel Augmented Fractional-Order Fuzzy Controller for Enhanced Robustness in Nonlinear and Uncertain Systems with Optimal Actuator Exertion. Arab J Sci Eng 46, 10185–10204 (2021). https://doi.org/10.1007/s13369-021-05508-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05508-8

Keywords

Navigation