Skip to main content
Log in

Model Test of Interaction Between Load-Caused Landslide and Double-Row Anti-slide Piles by Transparent Soil Material

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The double-row anti-slide pile is one of the main measures for treating medium and large-scale landslides. However, the pile–soil interaction mechanism and the influence of the row spacing and the pile spacing on the interaction are not very clear in the process of the load-caused landslide evolution. Based on the interaction model test of the double-row anti-slide pile and the load-caused landslide is carried out by using transparent soil model technology. The research results show that the transparent soil technology has advantages in capturing “wave-type” distribution of the displacement isoline and studying the pile–soil interaction and the soil arching effect in the landslide. The pile–soil interaction process can be divided into three stages, the initial deformation stage, the soil arch stability stage, and the deformation stage of the soil arch. With the increase in the row spacing, the reinforcement effect of the front pile to the rear pile is weakened. With the increase in the pile spacing, the phenomenon of soil flow around piles is more likely to happen. Pile spacing has a significant effect on landslide displacement control. And when the row spacing and the pile spacing are too large, there is no soil arch stability stage in the process of the landslide evolution. The conclusion has specific guiding significance for engineering practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9: a
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

All data, models, and code generated or used during the study appear in the published article.

References

  1. Fan, S.Y.; Song, Z.P.; Zhang, Y.W.; Liua, N.F.: Case study of the effect of rainfall infiltration on a tunnel underlying the roadbed slope with weak inter-layer. KSCE J. Civ. Eng 24(5), 1607–1619 (2020)

    Article  Google Scholar 

  2. Singh, T.N.; Verma, A.K.; Sarkar, K.: Static and dynamic analysis of a landslide Geomatics. Nat. Hazards Risk 1(4), 323–338 (2010)

    Article  Google Scholar 

  3. Kumar, N.; Verma, A.K.; Sardana, S.; Sarkar, K.; Singh, T.N.: Comparative analysis of limit equilibrium and numerical methods for prediction of a landslide. Bull. Eng. Geol. Env. 77(2), 595–608 (2018)

    Article  Google Scholar 

  4. Usluogullari, O.F.; Temugan, A.; Duman, E.S.: Comparison of slope stabilization methods by three-dimensional finite element analysis. Nat. Hazards 81(2), 1027–1050 (2015)

    Article  Google Scholar 

  5. Kang, G.C.; Song, Y.S.; Kim, T.H.: Behavior and stability of a large-scale cut slope considering reinforcement stages. Landslides 6(3), 263–272 (2009)

    Article  Google Scholar 

  6. Tang, X.S.; Zheng, Y.R.; Xin, J.P.: Experimental study and numerical simulation on the large-sized models of micro anti-slide piles. Adv. Mater. Res. 919–921, 670–677 (2014)

    Article  Google Scholar 

  7. Zhao, M.H.; Liu, D.P.; Zhang, L.; Jiang, C.: 3D finite element analysis on pile–soil interaction of passive pile group. J. Cent. South Univ. Technol. 15, 75–80 (2008)

    Article  Google Scholar 

  8. Qiao, S.; Xu, P.; Teng, J.; Sun, X.: Numerical study of optimal parameters on the high filling embankment landslide reinforced by the portal anti-slide pile. KSCE J. Civ. Eng. 24(5), 1460–1475 (2020)

    Article  Google Scholar 

  9. Zhao, B.; Wang, Y.S.; Wang, Y.; Shen, T.; Zhai, Y.C.: Retaining mechanism and structural characteristics of h type anti-slide pile (hTP pile) and experience with its engineering application. Eng. Geol. 222, 29–37 (2017)

    Article  Google Scholar 

  10. Wang, Z.; Yu, Y.; Sun, H.; Lu, Q.; Shang, Y.Q.: Robust optimization of the constructional time delay in the design of double-row stabilizing piles. Bull. Eng. Geol. Env. 79(1), 53–67 (2019)

    Article  Google Scholar 

  11. Kourkoulis, R.; Gelagoti, F.; Anastasopoulos, I.; Gazetas, G.: Slope stabilizing piles and pile-groups: parametric study and design insights. J. Geotech. Geoenviron. Eng. 137(7), 663–677 (2011)

    Article  Google Scholar 

  12. He, G.F.; Li, Z.G.; Yuan, Y.; Li, X.H.; Hu, L.H.; Zhang, Y.: Optimization analysis of the factors affecting the soil arching effect between landslide stabilizing piles. Nat. Resour. Model. 31(2), e12148 (2018)

    Article  MathSciNet  Google Scholar 

  13. Li, C.; Wang. Z.; Ding, X.M.: Anti-sliding mechanism in soil–rock slope with transparent soil model tests and DEM. Int. J. Phys. Model. Geotech. (2020). https://doi.org/10.1680/jphmg.19.00027

    Article  Google Scholar 

  14. Li, S.J.; Gao, H.; Xu, D.M.; Meng, F.Z.: Comprehensive determination of reinforcement parameters for high cut slope based on intelligent optimization and numerical analysis. J. Earth Sci. 23(2), 233–242 (2012)

    Article  Google Scholar 

  15. Xiao, S.; Zeng, J.; Yan, Y.: A rational layout of double-row stabilizing piles for large-scale landslide control. Bull. Eng. Geol. Env. 76(1), 309–321 (2016)

    Article  Google Scholar 

  16. Xiong, X.; Shi, Z.M.; Xiong, Y.L.; Peng, M.; Ma, X.L.; Zhang, F.: Unsaturated slope stability around the Three Gorges Reservoir under various combinations of rainfall and water level fluctuation. Eng. Geol. 261, 105231 (2019)

    Article  Google Scholar 

  17. Chatra, A.S.; Dodagoudar, G.R.; Maji, V.B.: Numerical modelling of rainfall effects on the stability of soil slopes. Int. J. Geotech. Eng. 13(5), 425–437 (2017)

    Article  Google Scholar 

  18. Tang, H.M.; Hu, X.L.; Xu, C.; Li, C.D.; Yong, R.; Wang, L.Q.: A novel approach for determining landslide pushing force based on landslide-pile interactions. Eng. Geol. 182, 15–24 (2014)

    Article  Google Scholar 

  19. Allersma, H.: Photo-elastic stress analysis and strains in simple shear. In: Proceeding of the Iutam Symposium on Deformation and Failure of Granular Materials. Rotterdam: A. A. Balkema, pp. 345–353 (1982)

  20. Bathurst, R.J.; Ezzein, F.M.: Geogrid and soil displacement observations during pullout using a transparent granular soil. Geotech. Test. J. 38(5), 673–685 (2015)

    Article  Google Scholar 

  21. Iskander, M.; Bathurst, R.; Omidvar, M.: Past, present, and future of transparent soils. Geotech. Test. J. 28(5), 557–573 (2015)

    Google Scholar 

  22. Ding, X.M.; Wu, Q.; Huang, Y.H.; Zhang, Y.L.: Model test on the soil arching effect of pile-supported embankments using transparent soil. Geotech. Test. J. 44(3), 20190347 (2021)

    Article  Google Scholar 

  23. Liu, J.Y.; Iskander, M.G.: Modelling capacity of transparent soil. Can. Geotech. J. 47(4), 451–460 (2010)

    Article  Google Scholar 

  24. Zhou, D.; Liu, H.L.; Zhang, W.G.; Ding, X.M.; Yang, C.Y.: Transparent soil model test on displacement field of soils around single passive pile. Rock Soil Mech. 40(7), 2686–2694 (2019)

    Google Scholar 

  25. Hu, X.D.; Zhang, H.; Mei, H.B.; Xiao, D.H.; Li, Y.Y.; Li, M.D.: Landslide susceptibility mapping using the stacking ensemble machine learning method in Lushui, Southwest China. Appl. Sci. Basel 10(11), 4016 (2020)

    Article  Google Scholar 

  26. Tan, F.L.; Hu, X.L.; Zhang, Y.M.; Wu, S.S.; Pan, Y.H.: Loading method research in model test of a landslide. Electron. J. Geotech. Eng. 21(9), 3007–3022 (2016)

    Google Scholar 

  27. Liu, D.Z.; Hu, X.L.; Zhou, C.; Xu, C.; He, C.C.; Zhang, H.; Wang, Q.: Deformation mechanisms and evolution of a pile-reinforced landslide under long-term reservoir operation. Eng. Geol. 275, 105747 (2020)

    Article  Google Scholar 

  28. Zou, Z.X.; Yan, J.b.; Tang, H.M.; Wang, S.H.; Xiong, C.G.; Hu, X.L.: A shear constitutive model for describing the full process of the deformation and failure of slip zone soil, Engineering Geology 276 (2020)

  29. Iskander, M.G.; Liu, J.Y.; Sadek, S.: Optical measurement of deformation using transparent silica gel to model sand. Int. J. Phys. Model. Geotech. 2(4), 13–26 (2002)

    Google Scholar 

  30. Kong, G.Q.; Cao, Z.H.; Zhou, H.; Sun, X.J.: Analysis of piles under oblique pullout load using transparent-soil models. Geotech. Test. J. 38(5), 725–738 (2015)

    Article  Google Scholar 

  31. Zhang, W.G.; Zhong, H.Y.; Xiang, Y.Z.; Wu, D.F.; Zeng, Z.K.; Zhang, Y.M.: Visualization and digitization of model tunnel deformation via transparent soil testing technique. Undergr. Space (2020). https://doi.org/10.1016/j.undsp.2020.05.004

    Article  Google Scholar 

  32. Ding, X.M.; Wu, Q.; Huang, Y.H.; Zhang, Y.L.: Model test on the soil arching effect of pile-supported embankments using transparent soil. Geotech. Test. J. (2020). https://doi.org/10.1520/GTJ20190347

    Article  Google Scholar 

  33. Li, S.J.; Chen, J.; Lian, C.: Mechanical model of soil arch for interaction of piles and slope and problem of pile spacing. Rock Soil Mech. 31(5), 1352–1358 (2010). (in Chinese)

    Google Scholar 

  34. Chen, G.F.; Zou, L.C.; Wang, Q.; Zhang, G.D.: Pile-spacing calculation of anti-slide pile based on soil arching effect. Adv. Civil Eng. 2020, 7149379 (2020)

    Google Scholar 

  35. Hu, X.L.; Zhou, C.; Xu, C.; Liu, D.Z.; Wu, S.S.; Li, L.X.: Model tests of the response of landslide-stabilizing piles to piles with different stiffness. Landslides 16(11), 2187–2200 (2019)

    Article  Google Scholar 

  36. Terzaghi, K.: Theoretical Soil Mechanics. Wiley, New York (1943)

    Book  Google Scholar 

  37. Bosscher, P.J.; Gray, D.H.: Soil arching in sandy slopes. J. Geotech. Eng. 112(6), 626–645 (1986)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51779021, 51008319) and the Key Laboratory of New Technology for Construction of Cities in Mountain Area (LNTCCMA-20200103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilin Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Q., Cao, Z., Shi, X. et al. Model Test of Interaction Between Load-Caused Landslide and Double-Row Anti-slide Piles by Transparent Soil Material. Arab J Sci Eng 46, 4841–4856 (2021). https://doi.org/10.1007/s13369-020-05256-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05256-1

Keywords

Navigation