Skip to main content
Log in

Comprehensive determination of reinforcement parameters for high cut slope based on intelligent optimization and numerical analysis

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

High cut slopes have been widely formed due to excavation activities during the period of immigrant relocation in the reservoir area of the Three Gorges, China. Effective reinforcement measures must be taken to guarantee the stability of the slopes and the safety of residents. This article presents a comprehensive method for integrating particle swarm optimization (PSO) and support vector machines (SVMs), combined with numerical analysis, to handle the determination of appropriate reinforcement parameters, which guarantee both slope stability and lower construction costs. The relationship between reinforcement parameters and slope factor of safety (FOS) and construction costs is investigated by numerical analysis and SVMs, PSO is adopted to determine the best SVM performance resulting in the lowest construction costs for a given FOS. This methodology is demonstrated by a practical reservoir high cut slope stabilised with anti-sliding piles, which is located at the Xingshan (兴山) County of Hubei (湖北) Province, China. The determination process of reinforcement parameters is discussed profoundly, and the pile spacing, length, and section dimension are obtained. The results provide a satisfactory reinforcement design, making it possible a signficant reduction in construction costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Feng, X. T., Zhao, H. B., Li, S. J., 2004a. Modeling Non-Linear Displacement Time Series of Geo-Materials Using Evolutionary Support Vector Machines. International Journal of Rock Mechanics and Mining Sciences, 41(7): 1087–1107, doi: 10.1016/j.ijrmms.2004.04.003

    Article  Google Scholar 

  • Feng, X. T., Zhao, H. B., Li, S. J., 2004b. A New Displacement Back Analysis to Identify Mechanical Geo-Material Parameters Based on Hybrid Intelligent Methodology. International Journal for Numerical and Analytical Methods in Geomechanics, 28(11): 1141–1165, doi: 10.1002/nag.381

    Article  Google Scholar 

  • Goh, A. T. C., Goh, S. H., 2007. Support Vector Machines: Their Use in Geotechnical Engineering as Illustrated Using Seismic Liquefaction Data. Computers and Geotechnics, 34(5): 410–421, doi: 10.1016/j.compgeo.2007.06.001

    Article  Google Scholar 

  • Goodman, R. E., Bray, J. W., 1976. Toppling of Rock Slopes. In: Proceedings, Specialty Conference on Rock Engineering for Foundations and Slopes, Vol. 2. Boulder, CO: American Society of Civil Engineers. 201–233

    Google Scholar 

  • John, S. T., Sun, S. L., 2011. A Review of Optimization Methodologies in Support Vector Machines. Neurocomputing, 74(17): 3609–3618, doi: 10.1016/j.neucom.2011. 06.026

    Article  Google Scholar 

  • Kennedy, Y. J., Eberhart, R. C., 1995. Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks. Perth, Australia 1942–1948, doi:10.1109/ICNN.1995.488968

  • Lee, S. G., Hencher, S. R., 2009. The Repeated Failure of a Cut-Slope despite Continuous Reassessment and Remedial Works. Engineering Geology, 107(1–2): 16–41, doi: 10.1016/j.enggeo.2009.03.011

    Article  Google Scholar 

  • Li, S. J., Feng, X. T., Zhao, H. B., et al., 2004. Forecast Analysis of Monitoring Data for High Slopes Based on Three-Dimensional Geological Information and Intelligent Algorithm. International Journal of Rock Mechanics and Mining Sciences, 41: 804–809, doi: 10.1016/j.ijrmms.2004.03.139

    Article  Google Scholar 

  • Oztekin, B., Topal, T., Kolat, C., 2006. Assessment of Degradation and Stability of a Cut Slope in Limestone, Ankara-Turkey. Engineering Geology, 84(1–2): 12–30, doi: 10.1016/j.enggeo. 2005.11.012

    Article  Google Scholar 

  • Seeber, C., Hartmann, H., Wei, X., 2010. Land Use Change and Causes in the Xiangxi Catchment, Three Gorges Area Derived from Multispectral Data. Journal of Earth Science, 21(6): 846–855, doi: 10.1007/s12583-010-0136-7

    Article  Google Scholar 

  • Tang, H. M., 2003. Study on Reservoir Bank Collapse and Its Engineering Prevention in the Three Gorges Areas, Changjiang River. Quaternary Sciences, 23(6): 648–656 (in Chinese with English Abstract)

    Google Scholar 

  • Vapnik, V. N., 1995. The Nature of Statistical Learning Theory. Springer, New York

    Google Scholar 

  • Yin, Y. P., Kang, H. D., Chen, B., 2000. Reconstruction and Utilization of Hazardous Geomass at Relocation Sites of Population from the Three Gorges Project Site. Journal of Engineering Geology, 8(1): 73–80 (in Chinese with English Abstract)

    Google Scholar 

  • Zanbak, C., 1983. Design Charts for Rock Slopes Susceptible to Topping. Journal of Geotechnical Engineering, 109(8): 1039–1062

    Article  Google Scholar 

  • Zhang, T. T., Yan, E. C., Cheng, J. T., et al., 2010. Mechanism of Reservoir Water in the Deformation of Hefeng Landslide. Journal of Earth Science, 21(6): 870–875, doi: 10.1007/s12583-010-0139-4

    Article  Google Scholar 

  • Zhao, H. B., Ru, Z. L., Yin, S. D., 2007. Updated Support Vector Machine for Seismic Liquefaction Evaluation Based on the Penetration Tests. Marine Georesources & Geotechnology, 25(3–4): 209–220, doi: 10.1080/10641190701702303

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojun Li  (李邵军).

Additional information

This study was supported by the National Natural Science Foundation of China (Nos. 40902091, 51178187) and the Special Funds for Major State Basic Research Project (No. 2010CB732006).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Gao, H., Xu, D. et al. Comprehensive determination of reinforcement parameters for high cut slope based on intelligent optimization and numerical analysis. J. Earth Sci. 23, 233–242 (2012). https://doi.org/10.1007/s12583-012-0250-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-012-0250-9

Key Words

Navigation