Skip to main content
Log in

Smooth Higher-Order Sliding Mode Control of a Class of Underactuated Mechanical Systems

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper investigates the application of smooth higher-order sliding mode (HOSM) control to a class of underactuated mechanical systems. Underactuated mechanical systems have increasing practical importance, but their strong nonlinear behavior and increased vulnerability to uncertainties due to the absence of actuators for some of the configuration variables make the control design problem a challenging task. Sliding mode control (SMC) has the most effective role in controlling such strong nonlinear uncertain systems. However, the standard SMC has chattering in the control action, which is undesired and practically not applicable, especially in mechanical control systems. To achieve smooth control and robustness needed for underactuated mechanical systems, smooth HOSM control laws based on the Super-Twisting Algorithm and the Smooth Super-Twisting Algorithm are proposed. Closed-form analytic expressions are derived for performance design parameters of the sliding surface. These expressions determine the performance of the sliding mode dynamics and also guarantee its stability. For comparison of the results, a standard SMC law is also presented and its merits/demerits are discussed. The design procedure is illustrated by applying it to two well-known cases of the Beam-and-Ball system and the Cart–Pole system as representative examples of the class. Numerical simulation results verify the enhanced control performance and robustness of the theoretical work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Isidori, A.: Nonlinear Control Systems. Springer Science & Business Media (2013)

  2. Spong, M.W.: Partial feedback linearization of underactuated mechanical systems. In: Proceedings of IEEE/RSJ/GI International Conference on Intelligent Robots and Systems, pp. 314–321, Munich (1994)

  3. Olfati-Saber, R.: Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles. Ph.D. thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge (2001)

  4. Olfati-Saber, R.: Normal forms for underactuated mechanical systems with symmetry. IEEE Trans. Autom. Control 47, 305–308 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Spong, M.W.: Energy based control of a class of underactuated mechanical systems. In: Proceedings of IFAC World Congress, pp. 431–435, San Francisco (1996)

  6. Ye, H.; Gui, W.; Jiang, Z.P.: Backstepping design for cascade systems with relaxed assumption on Lyapunov functions. IET Control Theory Appl. 5, 700–712 (2011)

    Article  MathSciNet  Google Scholar 

  7. Ortega, R.; Spong, M.W.; Gòmez-Estern, F.; Blankenstein, G.: Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Autom. Control 47, 1218–1232 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bloch, A.M.; Leonard, N.E.; Marsden, J.E.: Controlled Lagrangians and the stabilization of mechanical systems I: the first matching theorem. IEEE Trans. Autom. Control 45, 2253–2270 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bloch, A.M.; Chang, D.E.; Leonard, N.E.; Marsden, J.E.: Controlled Lagrangians and the stabilization of mechanical systems II: potential shaping. IEEE Trans. Autom. Control 46, 1556–1571 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Liu, Y.; Yu, H.: A survey of underactuated mechanical systems. IET Control Theory Appl. 7, 921–935 (2013)

    Article  MathSciNet  Google Scholar 

  11. Huang, J.; Guan, Z.H.; Matsuno, T.; Fukuda, T.; Sekiyama, K.: Sliding-mode velocity control of mobile-wheeled inverted-pendulum systems. IEEE Trans. Robot. 26, 750–758 (2010)

    Article  Google Scholar 

  12. Lopez-Martinez, M.; Acosta, J.A.; Cano, J.M.: Non-linear sliding mode surfaces for a class of underactuated mechanical systems. IET Control Theory Appl. 4, 2195–2204 (2010)

    Article  MathSciNet  Google Scholar 

  13. Ashrafiuon, H.; Erwin, R.S.: Sliding mode control of underactuated multibody systems and its application to shape change control. Int. J. Control 81, 1849–1858 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Yu, R.; Zhu, Q.; Xia, G.; Liu, Z.: Sliding mode tracking control of an underactuated surface vessel. IET Control Theory Appl. 6(3), 461–466 (2012)

    Article  MathSciNet  Google Scholar 

  15. Ashrafiuon, H.; Muske, K.R.; McNinch, L.C.; Soltan, R.A.: Sliding mode tracking control of surface vessels. IEEE Trans. Ind. Eletron. 55, 4004–4012 (2008)

    Article  Google Scholar 

  16. Xu, R.; Özgüner, U.: Sliding mode control of a class of underactuated systems. Automatica 44, 233–241 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Almutairi, N.B.; Zribi, M.: On the sliding mode control of a ball on a beam system. Nonlinear Dyn. 59, 221–238 (2010)

    Article  MATH  Google Scholar 

  18. Nikkhah, M.; Ashrafiuon, H.; Fahimi, F.: Robust control of underactuated bipeds using sliding modes. Robotica 25, 367–374 (2007)

    Article  Google Scholar 

  19. Almutairi, N.B.; Zribi, M.: Sliding mode control of a three dimensional overhead crane. J. Vib. Control 15, 1679–1730 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ngo, Q.H.; Hong, K.-S.: Sliding-mode antisway control of an offshore container crane. IEEE/ASME Trans. Mechatron. 17(2), 201–209 (2012)

    Article  Google Scholar 

  21. Utkin, V.I.; Guldner, J.; Shi, J.: Sliding Mode Control in Electromechanical Systems. Taylor and Francis, London (1999)

    Google Scholar 

  22. Edwards, C.; Spurgeon, S.: Sliding Mode Control: Theory and Applications. Taylor and Francis, London (1998)

    MATH  Google Scholar 

  23. Hauser, J.; Sastry, S.; Kokotovico, P.: Nonlinear control via approximate input–output linearization: the beam and ball example. IEEE Trans. Autom. Control 37, 392–398 (1992)

    Article  Google Scholar 

  24. Voytsekhovsky, D.; Hirschorn, R.M.: Stabilization of single-input nonlinear systems using higher order term compensating sliding mode control. Int. J. Robust Nonlinear Control 18(4–5), 468–480 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Goldstein, H.: Classical Mechanics. Addison-Wesley (1980)

  26. Maalouf, D.; Moog, C.H.; Aoustin, Y.; Li, S.: Classification of two-degree-of-freedom underactuated mechanical systems. IET Control Theory Appl. 9(10), 1501–1510 (2015)

    Article  MathSciNet  Google Scholar 

  27. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9/10), 924–941 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Shtessel, Y.B.; Shkolnikov, I.A.; Levant, A.: Smooth second-order sliding modes: missile guidance application. Automatica 43(8), 1470–1476 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Shtessel, Y.; Edwards, C.; Fridman, L.; Levant, A.: Sliding Mode Control and Observation. Birkhäuser, New York, NY, USA (2014)

  30. Chang, D.E.: Stabilizability of controlled Lagrangian systems of two degrees of freedom and one degree of under-actuation by the energy-shaping method. IEEE Trans. Autom. Control 55, 1888–1893 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Andreeva, F.; Aucklyb, D.; Gosavic, S.; Kapitanskib, L.; Kelkard, A.; Whitec, W.: Matching, linear systems, and the ball and beam. Automatica 38, 2147–2152 (2002)

    Article  MathSciNet  Google Scholar 

  32. Marton, L.; Hodel, A.S.; Lantos, B.; Hung, J.Y.: Underactuated robot control: comparing LQR, subspace stabilization, and combined error metric approaches. IEEE Trans. Ind. Electron. 50, 3724–3730 (2008)

    Article  Google Scholar 

  33. Ravichandran, M.T.; Mahindrakar, A.: Robust stabilization of a class of underactuated mechanical systems using time scaling and Lyapunov redesign. IEEE Trans. Ind. Electron. 58, 4299–4313 (2011)

    Article  Google Scholar 

  34. Aoustin, Y.; FormalSkii, A.: Ball on a beam: stabilization under saturated input control with large basin of attraction. Multibody Syst. Dyn. 21(1), 71–89 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. She, J.; Zhang, A.; Lai, X.; Wu, M.: Global stabilization of 2-DOF underactuated mechanical systems—an equivalent-input-disturbance approach. Nonlinear Dyn. 69(1–2), 495–509 (2012)

    Article  Google Scholar 

  36. Teel, A.R.: Tools for semiglobal stabilization by partial state and output feedback. SIAM J. Control Optim. 33(5), 1443–1488 (1995)

  37. Sepulchre, R.: Slow peaking and low-gain designs for global stabilization of nonlinear systems. IEEE Trans. Autom. Control 45(3), 453–461 (2001)

  38. Muškinja, N.; Tovornik, B.: Swinging up and stabilization of a real inverted pendulum. IEEE Trans. Ind. Electron. 53, 631–639 (2006)

    Article  Google Scholar 

  39. Mason, M.B.P.; Piccoli, B.: Time optimal swing-up of the planar pendulum. IEEE Trans. Autom. Control 53, 1876–1886 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  40. Chen, Y.F.; Huang, A.C.: Controller design for a class of underactuated mechanical systems. IET Control Theory Appl. 6, 103–110 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, I., Rehman, F.u. Smooth Higher-Order Sliding Mode Control of a Class of Underactuated Mechanical Systems. Arab J Sci Eng 42, 5147–5164 (2017). https://doi.org/10.1007/s13369-017-2617-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2617-9

Keywords

Navigation