Skip to main content
Log in

In Silico Prediction of Pharmacokinetic Profile for Human Oral Drug Candidates Which Lack Clinical Pharmacokinetic Experiment Data

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Backgrounds and Objectives

In silico methods which can generate high-quality physiologically based pharmacokinetic (PBPK) models for arbitrary drug candidates are greatly needed to select developable drug candidates that escape drug attrition because of the poor pharmacokinetic profile. The purpose of this study is to develop a novel protocol to preliminarily predict the concentration profile of a target drug based on the PBPK model of a structurally similar template drug by combining two software platforms for PBPK modeling, the SimCYP simulator and ADMET Predictor.

Methods

The method was evaluated by utilizing 13 drug pairs from 18 drugs in the built-in database of the SimCYP software. All drug pairs have Tanimoto scores (TS) no less than 0.5. As each drug in a drug pair can serve as both target and template, 26 sets were studied in this work. Three versions (V1, V2 and V3) of models for the target drug were constructed by replacing the corresponding parameters of the template drug step by step with those predicted by ADMET Predictor for the target drug. V1 represents the replacement of molecular weight (MW), V2 includes the replacement of parameter MW, fraction unbound in plasma (fu), blood-to-plasma partition ratio (B/P), logarithm of the octanol-buffer partition coefficient (log Po:w) and acid dissociation constant (pKa). In V3, all above-mentioned parameters as well as human jejunum effective permeability (Peff), Vd and cytochrome P450 (CYP) metabolism parameters (Km, Vmax or CLint) are modified. Normalized root mean square error (NRMSE) was used for the evaluation of the model performance.

Results

We found that the performance of the three versions of the models depends on structural similarity of the drug pairs. For Group I drug pairs (TS ≤ 0.7), V2 and V3 performed better than V1 in terms of NRMSE; for Group II drug pairs (0.7 < TS ≤ 0.9), 8 out of 10 V3 models had NRMSE < 0.2, the cutoff we applied to judge whether the simulated concentration-time (CT) curve was satisfactory or not. V3 outperformed the V1 and V2 versions. For the two drug pairs belonging to Group III (TS > 0.9), V2 outperformed V1 and V3, suggesting more unnecessary replacement can lower the performance of PBPK models. We also investigated how the prediction accuracy of ADMET Predictor as well as its collaboration with SimCYP influences the quality of PBPK models constructed using SimCYP.

Conclusion

In conclusion, we generated practical guidance on applying two mainstream software packages, ADMET Predictor and SimCYP, to construct PBPK models for drugs or drug candidates that lack ADME parameters in model construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eddershaw PJ, Beresford AP, Bayliss MK. ADME/PK as part of a rational approach to drug discovery. Drug Discov Today. 2000;5(9):409–14.

    Article  CAS  PubMed  Google Scholar 

  2. Lu J, Goldsmith MR, Grulke CM, Chang DT, Brooks RD, Leonard JA, Phillips MB, Hypes ED, Fair MJ, Tornero-Velez R, Johnson J, Dary CC, Tan YM Developing a physiologically-based pharmacokinetic model knowledgebase in support of provisional model construction. PLoS Comput Biol. 2016;12(2):e1004495.

  3. Zhuang X, Lu C. PBPK modeling and simulation in drug research and development. Acta Pharm Sin B. 2016;6(5):430–40.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lin L, Wong H. Predicting oral drug absorption: mini review on physiologically-based pharmacokinetic models. Pharmaceutics. 2017;9(4):41.

    Article  PubMed Central  Google Scholar 

  5. Turner JV, Maddalena DJ, Agatonovic-Kustrin S. Bioavailability prediction based on molecular structure for a diverse series of drugs. Pharm Res. 2004;21(1):68–82.

    Article  CAS  PubMed  Google Scholar 

  6. Wang J, Krudy G, Xie XQ, Wu C, Holland G. Genetic algorithm-optimized QSPR models for bioavailability, protein binding, and urinary excretion. J Chem Inf Model. 2006;46(6):2674–83.

    Article  CAS  PubMed  Google Scholar 

  7. Daga PR, Bolger MB, Haworth IS, Clark RD, Martin EJ. Physiologically based pharmacokinetic modeling in lead optimization. 1. Evaluation and adaptation of GastroPlus to predict bioavailability of medchem series. Mol Pharm. 2018;15(3):821–30.

    Article  CAS  PubMed  Google Scholar 

  8. Daga PR, Bolger MB, Haworth IS, Clark RD, Martin EJ. Physiologically based pharmacokinetic modeling in lead optimization. 2. Rational bioavailability design by global sensitivity analysis to identify properties affecting bioavailability. Mol Pharm. 2018;15(3):831–9.

    Article  CAS  PubMed  Google Scholar 

  9. Matsumura N, Hayashi S, Akiyama Y, Ono A, Funaki S, Tamura N, Kimoto T, Jiko M, Haruna Y, Sarashina A, Ishida M, Nishiyama K, Fushimi M, Kojima Y, Yoneda K, Nakanishi M, Kim S, Fujita T, Sugano K. Prediction characteristics of oral absorption simulation software evaluated using structurally diverse low-solubility drugs. J Pharm Sci. 2020;109(3):1403–16.

    Article  CAS  PubMed  Google Scholar 

  10. Jamei M, Marciniak S, Feng K, Barnett A, TuckerRostami-Hodjegan GA. The Simcyp population-based ADME simulator. Expert Opin Drug Metab Toxicol. 2009;5(2):211–23.

    Article  CAS  PubMed  Google Scholar 

  11. Hassan SF, Rashid U, Ansari FL, Ul-Haq Z. Bioisosteric approach in designing new monastrol derivatives: an investigation on their ADMET prediction using in silico derived parameters. J Mol Graph Model. 2013;45:202–10.

    Article  CAS  PubMed  Google Scholar 

  12. Hecht D, Fogel GB. Computational intelligence methods for ADMET prediction. Front Drug Des Discov. 2009;4:351–77.

    Google Scholar 

  13. Toropov AA, Toropova AP, Mukhamedzhanoval DV, Gutman I. Simplified molecular input line entry system (SMILES) as an alternative for constructing quantitative structure-property relationships (QSPR). Indian J. Chem. 2005;44:1545–1552.

    Google Scholar 

  14. https://www.drugbank.ca/. Accessed 14 Feb 2022.

  15. Bajusz D, Rácz A, Héberger K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J Cheminform. 2015;7(1):20.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sharma A, Lal SP. Tanimoto based similarity measure for intrusion detection system. J Inf Secur. 2011;2(04):195.

    Google Scholar 

  17. Compound Similarity. https://chemminetools.ucr.edu/similarity. Accessed 14 Feb 2022.

  18. Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev. 2001;50(Suppl 1):S41-67.

    Article  CAS  PubMed  Google Scholar 

  19. Franceschi L, Faggiani A, Furlanut M. A simple method to monitor serum concentrations of fluoxetine and its major metabolite for pharmacokinetic studies. J Pharm Biomed Anal. 2009;49(2):554–7.

    Article  CAS  PubMed  Google Scholar 

  20. D’Souza DL, Dimmitt DC, Robbins DK, Nezamis J, Simms L, Koch KM. Effect of alosetron on the pharmacokinetics of fluoxetine. J Clin Pharmacol. 2001;41(4):455–8.

    Article  CAS  PubMed  Google Scholar 

  21. WebPlotDigitizer. https://automeris.io/WebPlotDigitizer/. Accessed 14 Feb 2022.

  22. Tropsha A, Gramatica P, Gombar VK. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci. 2003;22(1):69–77.

    Article  CAS  Google Scholar 

  23. Chai T, Draxler RR. Root mean square error (RMSE) or mean absolute error (MAE)? GMDD. 2014;7(1):1525–34.

    Google Scholar 

  24. Laizure SC, Meibohm B, Nelson K, Chen F, Hu ZY, Parker RB. Comparison of caffeine disposition following administration by oral solution (energy drink) and inspired powder (AeroShot) in human subjects. Br J Clin Pharmacol. 2017;83(12):2687–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qiu F, Wang G, Zhao Y, Sun H, Mao GAJ, Sun J. Effect of danshen extract on pharmacokinetics of theophylline in healthy volunteers. Br J Clin Pharmacol. 2008;65(2):270–4.

    Article  PubMed  Google Scholar 

  26. Sugimoto K, Ohmori M, Tsuruoka S, Nishiki K, Kawaguchi A, Harada K, Arakawa M, Sakamoto K, Masada M, Miyamori I, Fujimura A. Different effects of St John’s wort on the pharmacokinetics of simvastatin and pravastatin. Clin Pharmacol Ther. 2001;70(6):518–24.

    Article  CAS  PubMed  Google Scholar 

  27. Chalon SA, Desager JP, Desante KA, Frye RF, Witcher J, Long AJ, Sauer JM, Golnez JL, Smith BP, Thomasson HR, Horsmans Y. Effect of hepatic impairment on the pharmacokinetics of atomoxetine and its metabolites. Clin Pharmacol Ther. 2003;73(3):178–91.

    Article  CAS  PubMed  Google Scholar 

  28. Nelson E, Powell JR, Conrad K, Likes K, Byers J, Baker S, Perrier D. Phenobarbital pharmacokinetics and bioavailability in adults. J Clin Pharmacol. 1982;22(2–3):141–8.

    Article  CAS  PubMed  Google Scholar 

  29. Wedlund PJ, Aslanian WS, Jacqz E, McAllister CB, Branch RA, Wilkinson GR. Phenotypic differences in mephenytoin pharmacokinetics in normal subjects. J Pharmacol Exp Ther. 1985;234(3):662–9.

    CAS  PubMed  Google Scholar 

  30. Greenblatt DJ, Harmatz JS, von Moltke LL, Wright CE, Durol AL, Harrel-Joseph LM, Shader RI. Comparative kinetics and response to the benzodiazepine agonists triazolam and zolpidem: evaluation of sex-dependent differences. J Pharmacol Exp Ther. 2000;293(2):435–43.

    CAS  PubMed  Google Scholar 

  31. Otani K, Yasui N, Furukori H, Kaneko S, Tasaki H, Ohkubo T, Nagasaki T, Sugawara K, Hayashi K. Relationship between single oral dose pharmacokinetics of alprazolam and triazolam. Int Clin Psychopharmacol. 1997;12(3):153–7.

    Article  CAS  PubMed  Google Scholar 

  32. Link B, Haschke M, Grignaschi N, Bodmer M, Aschmann YZ, Wenk M, Krähenbühl S. Pharmacokinetics of intravenous and oral midazolam in plasma and saliva in humans: usefulness of saliva as matrix for CYP3A phenotyping. Br J Clin Pharmacol. 2008;66(4):473–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen X, Jacobs G, de Kam M, Jaeger J, Lappalainen J, Maruff P, Smith MA, Cross AJ, Cohen A, Van Gerven J. The central nervous system effects of the partial GABA-A α2, 3-selective receptor modulator AZD7325 in comparison with lorazepam in healthy males. Br J Clin Pharmacol. 2014;78(6):1298–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. East T, Dye D. Determination of dextromethorphan and metabolites in human plasma and urine by high-performance liquid chromatography with fluorescence detection. J Chromatogr. 1985;338(1):99–112.

    Article  CAS  PubMed  Google Scholar 

  35. Connarn JN, Flowers S, Kelly M, Luo R, Ward KM, Harrington G, Moncion I, Kamali M, McInnis M, Feng MR, Ellingrod V, Babiskin A, Zhang X, Sun D. Pharmacokinetics and pharmacogenomics of bupropion in three different formulations with different release kinetics in healthy human volunteers. AAPS J. 2017;19(5):1513–22.

    Article  CAS  PubMed  Google Scholar 

  36. Pringle TH, Francis RJ, East PB, Shanks RG. Pharmacodynamic and pharmacokinetic studies on bufuralol in man. Br J Clin Pharmacol. 1986;22(5):527–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kolb KW, Garnett WR, Small RE, Vetrovec GW, Kline BJ, Fox T. Effect of cimetidine on quinidine clearance. Ther Drug Monit. 1984;6(3):306–12.

    Article  CAS  PubMed  Google Scholar 

  38. Ciraulo DA, Barnhill JG, Jaffe JH. Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers. Clin Pharmacol Ther. 1988;43(5):509–18.

    Article  CAS  PubMed  Google Scholar 

  39. Madani S, Barilla D, Cramer J, Wang Y, Paul C. Effect of terbinafine on the pharmacokinetics and pharmacodynamics of desipramine in healthy volunteers identified as cytochrome P450 2D6 (CYP2D6) extensive metabolizers. J Clin Pharmacol. 2002;42(11):1211–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junmei Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Funding

The authors gratefully acknowledge the funding support from the National Science Foundation (1955260) and National Institutes of Health of the USA (R01GM079383, R21GM097617 and P30DA035778).

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

All data have been provided in the manuscript and supplemental information.

Code availability

Not applicable.

Author contributions

JZ, JW and SL designed the research. JZ and BJ performed the research and analyzed the data, all authors wrote the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

13318_2022_758_MOESM1_ESM.docx

The input parameters of 18 drugs and predicted pharmacokinetic profiles of models in V1-V3 are listed in Table S1-S3. (DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, J., Ji, B., Liu, S. et al. In Silico Prediction of Pharmacokinetic Profile for Human Oral Drug Candidates Which Lack Clinical Pharmacokinetic Experiment Data. Eur J Drug Metab Pharmacokinet 47, 403–417 (2022). https://doi.org/10.1007/s13318-022-00758-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-022-00758-9

Navigation