Skip to main content
Log in

Prediction of Axial Compression Capacity of Cold-Formed Steel Oval Hollow Section Columns Using ANN and ANFIS Models

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

The steel oval hollow section (OHS) provides an aesthetic architecture and a greater local buckling strength. However, the existing design codes do not specify the effective width in calculating the load-bearing capacity of OHS members. This study aims to predict the axial compression capacity (ACC) of cold-formed steel OHS columns using artificial neural network (ANN) and adaptive neural fuzzy inference system (ANFIS) models. A total of 128 data sets collected from the literature were utilized to develop the ANN and ANFIS models. The performance of the two machine learning models was compared with three existing design codes. The results demonstrated that the developed ANN and ANFIS models predicted the ACC of steel OHS columns more accurately compared to the existing formulas. Specifically, the ANN model revealed a superior performance with the highest coefficient of determination and the smallest root means square errors. Moreover, the formulas based on ANN and ANFIS models, which accommodates all input parameters, were proposed to predict the ACC of cold-formed steel OHS columns. The thickness of the cross-section was the most influential parameter on the ACC of the OHS column. By contrast, the column length negatively affected the ACC value of the steel column. Finally, a graphical user interface tool was developed to readily calculate the ACC of the steel OHS columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11), e00938.

    Article  Google Scholar 

  • Ahmadi, M., Naderpour, H., & Kheyroddin, A. (2014). Utilization of artificial neural networks to prediction of the capacity of CCFT short columns subject to short term axial load. Archives of Civil and Mechanical Engineering, 14(3), 510–517.

    Article  Google Scholar 

  • AISC. (2010). Specification for structural steel buildings (ANSI/AISC 360–10). American Institute of Steel Construction. Chicago-Illinois, USA.

  • AISI. (2016). AISI-S100-16: North American specification for the design of cold-formed steel structural members. American Iron and Steel Institute, Washington, DC, USA.

  • AS/NZS. (2005). Australia/New Zealand standard AS/NZS 4600 cold-formed steel structures.

  • Chaabene, W. B., Flah, M., & Nehdi, M. L. (2020). Machine learning prediction of mechanical properties of concrete: Critical review. Construction and Building Materials, 260, 119889.

    Article  Google Scholar 

  • Chan, T.-M., Huai, Y.-M., & Wang, W. (2015). Experimental investigation on lightweight concrete-filled cold-formed elliptical hollow section stub columns. Journal of Constructional Steel Research, 115, 434–444.

    Article  Google Scholar 

  • Chan, T. M., & Gardner, L. (2008). Bending strength of hot-rolled elliptical hollow sections. Journal of Constructional Steel Research, 64(9), 971–986.

    Article  Google Scholar 

  • Chan, T. M., & Gardner, L. (2009). Flexural buckling of elliptical hollow section columns. Journal of Structural Engineering, 135(5), 546–557.

    Article  Google Scholar 

  • Chen, M.-T., & Young, B. (2018a). Cross-sectional behavior of cold-formed steel semi-oval hollow sections. Engineering Structures, 177, 318–330.

    Article  Google Scholar 

  • Chen, M.-T., & Young, B. (2018b). Experimental and numerical investigation on cold-formed steel semi-oval hollow section compression members. Journal of Constructional Steel Research, 151, 174–184.

    Article  Google Scholar 

  • Chen, M.-T., & Young, B. (2019a). Behavior of cold-formed steel elliptical hollow sections subjected to bending. Journal of Constructional Steel Research, 158, 317–330.

    Article  Google Scholar 

  • Chen, M.-T., & Young, B. (2019b). Material properties and structural behavior of cold-formed steel elliptical hollow section stub columns. Thin-Walled Structures, 134, 111–126.

    Article  Google Scholar 

  • Chen, M.-T., & Young, B. (2019c). Structural performance of cold-formed steel elliptical hollow section pin-ended columns. Thin-Walled Structures, 136, 267–279.

    Article  Google Scholar 

  • Chen, M.-T., & Young, B. (2020). Tests of cold-formed steel semi-oval hollow section members under eccentric axial load. Journal of Structural Engineering, 146(4), 04020027.

    Article  Google Scholar 

  • Chen, M.-T., & Young, B. (2021). Numerical analysis and design of cold-formed steel elliptical hollow sections under combined compression and bending. Engineering Structures, 241, 112417.

    Article  Google Scholar 

  • Dias, J. L. R., & Silvestre, N. (2011). A neural network based closed-form solution for the distortional buckling of elliptical tubes. Engineering Structures, 33(6), 2015–2024.

    Article  Google Scholar 

  • EN1993-1-1. (2005). Eurocode 3: Design of steel structures-Part 1-1: General rules and rules for buildings. CEN, Brussels: European Committee for Standardization.

  • Falcone, R., Lima, C., & Martinelli, E. (2020). Soft computing techniques in structural and earthquake engineering: A literature review. Engineering Structures, 207, 110269.

    Article  Google Scholar 

  • Fang, Z., Roy, K., Chen, B., Sham, C.-W., Hajirasouliha, I., & Lim, J. B. (2021a). Deep learning-based procedure for structural design of cold-formed steel channel sections with edge-stiffened and un-stiffened holes under axial compression. Thin-Walled Structures, 166, 108076.

    Article  Google Scholar 

  • Fang, Z., Roy, K., Ma, Q., Uzzaman, A., & Lim, J. B. (2021b) Application of deep learning method in web crippling strength prediction of cold-formed stainless steel channel sections under end-two-flange loading. In Structures (Vol. 33, pp. 2903–2942). Elsevier.

  • Fang, Z., Roy, K., Mares, J., Sham, C.-W., Chen, B., & Lim, J. B. (2021c). Deep learning-based axial capacity prediction for cold-formed steel channel sections using Deep Belief Network. In Structures (Vol. 33, pp. 2792–2802). Elsevier.

  • Feng, D.-C., Liu, Z.-T., Wang, X.-D., Jiang, Z.-M., & Liang, S.-X. (2020). Failure mode classification and bearing capacity prediction for reinforced concrete columns based on ensemble machine learning algorithm. Advanced Engineering Informatics, 45, 101126.

    Article  Google Scholar 

  • Flood, I., & Kartam, N. (1998). Artificial neural networks for civil engineers: Advanced features and applications. ASCE Publications.

    Google Scholar 

  • Gardner, L., & Chan, T. M. (2007). Cross-section classification of elliptical hollow sections. Steel and Composite Structures, 7(3), 185.

    Article  Google Scholar 

  • Gardner, L., & Ministro, A. (2005). Structural steel oval hollow sections. Structural Engineer, 83(21), 32–36.

    Google Scholar 

  • Güneyisi, E. M., Gültekin, A., & Mermerdaş, K. (2016). Ultimate capacity prediction of axially loaded CFST short columns. International Journal of Steel Structures, 16(1), 99–114.

    Article  Google Scholar 

  • Hadi, M. N. (2003). Neural networks applications in concrete structures. Computers & Structures, 81(6), 373–381.

    Article  Google Scholar 

  • Hakim, S. J. S., & Razak, H. A. (2013). Adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANNs) for structural damage identification. Structural Engineering and Mechanics: An International Journal, 45(6), 779–802.

    Article  Google Scholar 

  • Jang, J.-S. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665–685.

    Article  Google Scholar 

  • Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A review of classification techniques. Emerging Artificial Intelligence Applications in Computer Engineering, 160(1), 3–24.

    Google Scholar 

  • Le, L. M., Ly, H.-B., Pham, B. T., Le, V. M., Pham, T. A., Nguyen, D.-H., et al. (2019). Hybrid artificial intelligence approaches for predicting buckling damage of steel columns under axial compression. Materials, 12(10), 1670.

    Article  Google Scholar 

  • Le, T.-T. (2020a). Practical hybrid machine learning approach for estimation of ultimate load of elliptical concrete-filled steel tubular columns under axial loading. Advances in Civil Engineering, 2020, 1–19.

  • Le, T.-T. (2020b). Practical machine learning-based prediction model for axial capacity of square CFST columns. Mechanics of Advanced Materials and Structures, 1–16. https://doi.org/10.1080/15376494.2020.1839608

  • Le, T.-T., Asteris, P. G., & Lemonis, M. E. (2021). Prediction of axial load capacity of rectangular concrete-filled steel tube columns using machine learning techniques. Engineering with Computers, 1–34. https://doi.org/10.1007/s00366-021-01461-0

  • Luat, N.-V., Lee, J., Lee, D. H., & Lee, K. (2020). GS-MARS method for predicting the ultimate load-carrying capacity of rectangular CFST columns under eccentric loading. Computers and Concrete, 25(1), 1–14.

    Google Scholar 

  • Luat, N.-V., Shin, J., & Lee, K. (2020b). Hybrid BART-based models optimized by nature-inspired metaheuristics to predict ultimate axial capacity of CCFST columns. Engineering with Computers, 1–30. https://doi.org/10.1007/s00366-020-01115-7

  • Ly, H.-B., Le, L. M., Duong, H. T., Nguyen, T. C., Pham, T. A., Le, T.-T., et al. (2019). Hybrid artificial intelligence approaches for predicting critical buckling load of structural members under compression considering the influence of initial geometric imperfections. Applied Sciences, 9(11), 2258.

    Article  Google Scholar 

  • Ly, H.-B., Pham, B. T., Le, L. M., Le, T.-T., Le, V. M., & Asteris, P. G. (2021). Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models. Neural Computing and Applications, 33(8), 3437–3458.

    Article  Google Scholar 

  • Mai, S. H., Seghier, M. E. A. B., Nguyen, P. L., Jafari-Asl, J., & Thai, D.-K. (2020). A hybrid model for predicting the axial compression capacity of square concrete-filled steel tubular columns. Engineering with Computers, 1–18. https://doi.org/10.1007/s00366-020-01104-w

  • Mathworks, I. (2018). MATLAB and statistics toolbox release 2018b. Natick (Massachusetts, United States).

  • Mirrashid, M., & Naderpour, H. (2020). Recent trends in prediction of concrete elements behavior using soft computing (2010–2020). Archives of Computational Methods in Engineering, 28, 3307–3327.

    Article  Google Scholar 

  • Naderpour, H., & Alavi, S. A. (2017). A proposed model to estimate shear contribution of FRP in strengthened RC beams in terms of Adaptive Neuro-Fuzzy Inference System. Composite Structures, 170, 215–227.

    Article  Google Scholar 

  • Nguyen, D.-D., Tran, V.-L., Ha, D.-H., Nguyen, V.-Q., & Lee, T.-H. (2021a). A machine learning-based formulation for predicting shear capacity of squat flanged RC walls. Structures, 29, 1734–1747.

    Article  Google Scholar 

  • Nguyen, M.-S.T., Thai, D.-K., & Kim, S.-E. (2020). Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network. Steel and Composite Structures, 35(3), 415–437.

    MathSciNet  Google Scholar 

  • Nguyen, M.-S. T., Trinh, M.-C., & Kim, S.-E. (2021b). Uncertainty quantification of ultimate compressive strength of CCFST columns using hybrid machine learning model. Engineering with Computers, 1–20.

  • Nguyen, T.-H., Tran, N.-L., & Nguyen, D.-D. (2021c). Prediction of Critical Buckling Load of Web Tapered I-Section Steel Columns Using Artificial Neural Networks. International Journal of Steel Structures, 21(4), 1159–1181.

  • Nikbin, I. M., Rahimi, S., & Allahyari, H. (2017). A new empirical formula for prediction of fracture energy of concrete based on the artificial neural network. Engineering Fracture Mechanics, 186, 466–482.

    Article  Google Scholar 

  • Reich, Y. (1997). Machine learning techniques for civil engineering problems. Computer-Aided Civil and Infrastructure Engineering, 12(4), 295–310.

    Article  Google Scholar 

  • Sadrmomtazi, A., Sobhani, J., & Mirgozar, M. A. (2013). Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS. Construction and Building Materials, 42, 205–216.

    Article  Google Scholar 

  • Seghier, M. E. A. B., Gao, X.-Z., Jafari-Asl, J., Thai, D.-K., Ohadi, S., & Trung, N.-T. (2021). Modeling the nonlinear behavior of ACC for SCFST columns using experimental-data and a novel evolutionary-algorithm. In Structures, 2021 (Vol. 30, pp. 692–709). Elsevier.

  • Siam, A., Ezzeldin, M., & El-Dakhakhni, W. (2019). Machine learning algorithms for structural performance classifications and predictions: Application to reinforced masonry shear walls. In Structures (Vol. 22, pp. 252–265). Elsevier.

  • Silvestre, N. (2008). Buckling behaviour of elliptical cylindrical shells and tubes under compression. International Journal of Solids and Structures, 45(16), 4427–4447.

    Article  MATH  Google Scholar 

  • Sugeno, M. (1985). An introductory survey of fuzzy control. Information Sciences, 36(1–2), 59–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Sun, H., Burton, H. V., & Huang, H. (2020). Machine learning applications for building structural design and performance assessment: state-of-the-art review. Journal of Building Engineering, 33, 101816.

    Article  Google Scholar 

  • Theofanous, M., Chan, T. M., & Gardner, L. (2009). Structural response of stainless steel oval hollow section compression members. Engineering Structures, 31(4), 922–934.

    Article  Google Scholar 

  • Tran, V.-L., Jang, Y., & Kim, S.-E. (2021). Improving the axial compression capacity prediction of elliptical CFST columns using a hybrid ANN-IP model. Steel and Composite Structures, 39(3), 319–335.

    Google Scholar 

  • Tran, V.-L., & Kim, S.-E. (2020a). Efficiency of three advanced data-driven models for predicting axial compression capacity of CFDST columns. Thin-Walled Structures, 152, 106744.

    Article  Google Scholar 

  • Tran, V.-L., & Kim, S.-E. (2020b). A practical ANN model for predicting the PSS of two-way reinforced concrete slabs. Engineering with Computers, 37, 2303–2327.

  • Tran, V.-L., Thai, D.-K., & Kim, S.-E. (2019a). Application of ANN in predicting ACC of SCFST column. Composite Structures, 228, 111332.

    Article  Google Scholar 

  • Tran, V.-L., Thai, D.-K., & Kim, S.-E. (2019b). A new empirical formula for prediction of the axial compression capacity of CCFT columns. Steel and Composite Structures, 33(2), 181–194.

    Google Scholar 

  • Tran, V.-L., Thai, D.-K., & Nguyen, D.-D. (2020). Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete. Thin-Walled Structures, 151, 106720.

    Article  Google Scholar 

  • Vakhshouri, B., & Nejadi, S. (2018). Prediction of compressive strength of self-compacting concrete by ANFIS models. Neurocomputing, 280, 13–22.

    Article  Google Scholar 

  • Vu, Q.-V., Truong, V.-H., & Thai, H.-T. (2021). Machine learning-based prediction of CFST columns using gradient tree boosting algorithm. Composite Structures, 259, 113505.

    Article  Google Scholar 

  • Worden, K., & Manson, G. (2007). The application of machine learning to structural health monitoring. Philosophical Transactions of the Royal Society a: Mathematical, Physical and Engineering Sciences, 365(1851), 515–537.

    Article  Google Scholar 

  • Xu, Y., Zheng, B., & Zhang, M. (2021). Capacity prediction of cold-formed stainless steel tubular columns using machine learning methods. Journal of Constructional Steel Research, 182, 106682.

    Article  Google Scholar 

  • Zarringol, M., Thai, H.-T., & Naser, M. (2021). Application of machine learning models for designing CFCFST columns. Journal of Constructional Steel Research, 185, 106856.

    Article  Google Scholar 

  • Zhou, Q., Zhu, F., Yang, X., Wang, F., Chi, B., & Zhang, Z. (2017). Shear capacity estimation of fully grouted reinforced concrete masonry walls using neural network and adaptive neuro-fuzzy inference system models. Construction and Building Materials, 153, 937–947.

    Article  Google Scholar 

  • Zhu, J.-H., Su, M.-N., Zhu, X., Daniels, J., & Young, B. (2021). Flexural behaviour of cold-formed steel oval hollow section beams. Journal of Constructional Steel Research, 180, 106605.

    Article  Google Scholar 

  • Zhu, J.-H., & Young, B. (2011). Cold-formed-steel oval hollow sections under axial compression. Journal of Structural Engineering, 137(7), 719–727.

    Article  Google Scholar 

  • Zhu, J.-H., & Young, B. (2012). Design of cold-formed steel oval hollow section columns. Journal of Constructional Steel Research, 71, 26–37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duy-Duan Nguyen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Database used in developing ANN and ANFIS models

Appendix: Database used in developing ANN and ANFIS models

\(D\)

(mm)

\(W\)

(mm)

\(t\)

(mm)

\(h/t\)

\(L\)

(mm)

\(E\)

(MPa)

\(\sigma_{u}\)

(MPa)

\(\varepsilon_{f}\)

(%)

\(\sigma_{0.2}\)

(MPa)

\(P_{Test}\)

(kN)

120

48

2

36

360

202

403

18

359

181.2

120

48

2

36

360

202

403

18

359

185.9

120

48

2

36

600

202

403

18

359

196

120

48

2

36

1200

202

403

18

359

190.3

120

48

2

36

1200

202

403

18

359

188.5

120

48

2

36

1800

202

403

18

359

183.9

120

48

2

36

2400

202

403

18

359

173.1

120

48

2

36

3000

202

403

18

359

157.7

42

21

2.8

7.5

126

200

456

20

443

144.1

42

21

2.8

7.5

300

200

456

20

443

122.3

42

21

2.8

7.5

600

200

456

20

443

111

42

21

2.8

7.5

900

200

456

20

443

96.8

42

21

2.8

7.5

900

200

456

20

443

92.8

42

21

2.8

7.5

1200

200

456

20

443

64.6

42

21

2.8

7.5

1500

200

456

20

443

51.5

115

38

2

38.5

345

202

387

27

359

163.3

115

38

2

38.5

600

202

387

27

359

156.2

115

38

2

38.5

1200

202

387

27

359

146.6

115

38

2

38.5

1800

202

387

27

359

131.6

115

38

2

38.5

2400

202

387

27

359

118.8

115

38

2

38.5

3000

202

387

27

359

103.5

30

15

1.6

9.4

90

199

454

21

432

58.4

30

15

1.6

9.4

300

199

454

21

432

51.1

30

15

1.6

9.4

600

199

454

21

432

38.9

30

15

1.6

9.4

900

199

454

21

432

30.4

30

15

1.6

9.4

900

199

454

21

432

28.4

30

15

1.6

9.4

1200

199

454

21

432

19

30

15

1.6

9.4

1500

199

454

21

432

12.7

300

60

2

120

500

202

387

27

359

223.4

300

60

2

120

1200

202

387

27

359

205

300

60

2

120

2000

202

387

27

359

202.3

300

60

2

120

2700

202

387

27

359

178.3

300

60

2

120

3500

202

387

27

359

171.7

300

60

2.4

100

500

202

387

27

359

299.9

300

60

2.4

100

1200

202

387

27

359

273.3

300

60

2.4

100

2000

202

387

27

359

267.1

300

60

2.4

100

2700

202

387

27

359

237.7

300

60

2.4

100

3500

202

387

27

359

227.3

300

60

3

80

500

202

387

27

359

429.4

300

60

3

80

1200

202

387

27

359

395.9

300

60

3

80

2000

202

387

27

359

380.7

300

60

3

80

2700

202

387

27

359

355.7

300

60

3

80

3500

202

387

27

359

326.5

300

60

4

60

500

202

387

27

359

700.6

300

60

4

60

1200

202

387

27

359

658.5

300

60

4

60

2000

202

387

27

359

626.3

300

60

4

60

2700

202

387

27

359

598.5

300

60

4

60

3500

202

387

27

359

562.8

300

60

10

24

500

202

387

27

359

2350.6

300

60

10

24

1200

202

387

27

359

2279.6

300

60

10

24

2000

202

387

27

359

2133.6

300

60

10

24

2700

202

387

27

359

1994.4

300

60

10

24

3500

202

387

27

359

1826.2

300

75

1.9

118.4

500

202

387

27

359

237.5

300

75

1.9

118.4

1200

202

387

27

359

231.1

300

75

1.9

118.4

2000

202

387

27

359

220.6

300

75

1.9

118.4

2700

202

387

27

359

212.8

300

75

1.9

118.4

3500

202

387

27

359

182.1

300

75

2.2

102.3

500

202

387

27

359

286

300

75

2.2

102.3

1200

202

387

27

359

284.8

300

75

2.2

102.3

2000

202

387

27

359

266.2

300

75

2.2

102.3

2700

202

387

27

359

263.1

300

75

2.2

102.3

3500

202

387

27

359

245.7

300

75

2.8

80.4

500

202

387

27

359

415.5

300

75

2.8

80.4

1200

202

387

27

359

406.2

300

75

2.8

80.4

2000

202

387

27

359

387.8

300

75

2.8

80.4

2700

202

387

27

359

373.2

300

75

2.8

80.4

3500

202

387

27

359

348.9

300

75

3.8

59.2

500

202

387

27

359

678.9

300

75

3.8

59.2

1200

202

387

27

359

648.1

300

75

3.8

59.2

2000

202

387

27

359

621.9

300

75

3.8

59.2

2700

202

387

27

359

603.4

300

75

3.8

59.2

3500

202

387

27

359

579.7

300

75

10

22.5

500

202

387

27

359

2433.9

300

75

10

22.5

1200

202

387

27

359

2380.1

300

75

10

22.5

2000

202

387

27

359

2266.4

300

75

10

22.5

2700

202

387

27

359

2147.8

300

75

10

22.5

3500

202

387

27

359

2016.8

300

100

1.7

117.6

500

202

387

27

359

228.3

300

100

1.7

117.6

1200

202

387

27

359

226.3

300

100

1.7

117.6

2000

202

387

27

359

222.4

300

100

1.7

117.6

2700

202

387

27

359

216.8

300

100

1.7

117.6

3500

202

387

27

359

208.8

300

100

2

100

500

202

387

27

359

283.7

300

100

2

100

1200

202

387

27

359

282.4

300

100

2

100

2000

202

387

27

359

278.1

300

100

2

100

2700

202

387

27

359

271.8

300

100

2

100

3500

202

387

27

359

261.3

300

100

2.5

80

500

202

387

27

359

385.9

300

100

2.5

80

1200

202

387

27

359

384.1

300

100

2.5

80

2000

202

387

27

359

376.7

300

100

2.5

80

2700

202

387

27

359

369.5

300

100

2.5

80

3500

202

387

27

359

356.4

300

100

3.3

60.6

500

202

387

27

359

578

300

100

3.3

60.6

1200

202

387

27

359

574

300

100

3.3

60.6

2000

202

387

27

359

560.6

300

100

3.3

60.6

2700

202

387

27

359

550.9

300

100

3.3

60.6

3500

202

387

27

359

535.7

300

100

10

20

500

202

387

27

359

2514.8

300

100

10

20

1200

202

387

27

359

2487.9

300

100

10

20

2000

202

387

27

359

2422.6

300

100

10

20

2700

202

387

27

359

2338.4

300

100

10

20

3500

202

387

27

359

2234

300

150

1.3

115.4

500

202

387

27

359

211.5

300

150

1.3

115.4

1200

202

387

27

359

208.5

300

150

1.3

115.4

2000

202

387

27

359

206.6

300

150

1.3

115.4

2700

202

387

27

359

204.3

300

150

1.3

115.4

3500

202

387

27

359

203.5

300

150

1.5

100

500

202

387

27

359

255.9

300

150

1.5

100

1200

202

387

27

359

253.3

300

150

1.5

100

2000

202

387

27

359

252.1

300

150

1.5

100

2700

202

387

27

359

249.4

300

150

1.5

100

3500

202

387

27

359

240

300

150

1.8

83.3

500

202

387

27

359

325.3

300

150

1.8

83.3

1200

202

387

27

359

322.7

300

150

1.8

83.3

2000

202

387

27

359

318

300

150

1.8

83.3

2700

202

387

27

359

313.9

300

150

1.8

83.3

3500

202

387

27

359

307.8

300

150

2.5

60

500

202

387

27

359

499.5

300

150

2.5

60

1200

202

387

27

359

482.1

300

150

2.5

60

2000

202

387

27

359

479.5

300

150

2.5

60

2700

202

387

27

359

473.5

300

150

2.5

60

3500

202

387

27

359

466.8

300

150

10

15

500

202

387

27

359

2788.1

300

150

10

15

1200

202

387

27

359

2755.4

300

150

10

15

2000

202

387

27

359

2694.9

300

150

10

15

2700

202

387

27

359

2638.7

300

150

10

15

3500

202

387

27

359

2566.9

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, TH., Tran, NL. & Nguyen, DD. Prediction of Axial Compression Capacity of Cold-Formed Steel Oval Hollow Section Columns Using ANN and ANFIS Models. Int J Steel Struct 22, 1–26 (2022). https://doi.org/10.1007/s13296-021-00557-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-021-00557-z

Keywords

Navigation