Skip to main content

Advertisement

Log in

Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The main objective of the present work is to estimate the load-carrying capacity of concrete-filled steel tubes (CFST) under axial compression using hybrid artificial intelligence (AI) algorithms. In particular, the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic optimization methods, such as the biogeography-based optimization (ANFIS-BBO), the particle swarm optimization (ANFIS-PSO), and the genetic algorithm (ANFIS-GA), have been employed taking into account the variability of input parameters. Commonly used statistical criteria, such as the coefficient of determination (R2), the a20-index, and the root mean squared error (RMSE), were utilized to evaluate and compare the effectiveness of the proposed AI models. The Monte Carlo approach was used to propagate the variability in the input space to the predicted output. The results showed that the ANFIS system, optimized by PSO, was the most effective and robust model with respect to three considered criteria (a20-index = 0.881, R2 = 0.942 and RMSE = 185.631). Sensitivity analysis was performed, indicating that the minor axis length and thickness of the steel tube exhibited the highest contribution to the axial compression load-carrying capacity of the CFST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Güllü H, Recep İ (2016) A seismic hazard study through the comparison of ground motion prediction equations using the weighting factor of logic tree. J Earthq Eng 20:861–884

    Google Scholar 

  2. Güllü H, Murat P (2014) On the resonance effect by dynamic soil structure interaction a revelation study. Nat Hazards 72:827–847

    Google Scholar 

  3. Güllü H, Atilla MA, Aydin Ö (2008) Seismic hazard studies for Gaziantep city in South Anatolia of Turkey. Nat Hazards 44:19–50

    Google Scholar 

  4. Güllü H (2016) Comparison of rheological models for jet grout cement mixtures with various stabilizers. Constr Build Mater 127:220–236

    Google Scholar 

  5. Güllü H, Serkan G (2013) Performance of fine-grained soil treated with industrial wastewater sludge. Environ Earth Sci 70:777–788

    Google Scholar 

  6. Güllü H, Cevik A, Al-Ezzi KM, Gülsan ME (2019) On the rheology of using geopolymer for grouting: a comparative study with cement-based grout included fly ash and cold bonded fly ash. Constr Build Mater 196:594–610

    Google Scholar 

  7. Yang J, Sheehan T, Dai XH, Lam D (2015) Experimental study of beam to concrete-filled elliptical steel tubular column connections. Thin-Walled Struct 95:16–23

    Google Scholar 

  8. Espinos A, Gardner L, Romero ML, Hospitaler A (2011) Fire behaviour of concrete filled elliptical steel columns. Thin-Walled Struct 49:239–255

    Google Scholar 

  9. Asteris PG, Nozhati S, Nikoo M et al (2018) Krill herd algorithm-based neural network in structural seismic reliability evaluation. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2018.1430874

    Article  Google Scholar 

  10. Bergmann R, Matsui C, Meinsma C, Dutta D (1995) Design guide for concrete filled hollow section columns under static and seismic loading. In: CIDECT design guide 5, CIDECT

  11. Asteris PG, Tsaris AK, Cavaleri L et al (2016) Prediction of the fundamental period of infilled RC frame structures using artificial neural networks. Intell Neurosci 20(20–20):20. https://doi.org/10.1155/2016/5104907

    Article  Google Scholar 

  12. Asteris PG, Nikoo M (2019) Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures. Neural Comput Appl. https://doi.org/10.1007/s00521-018-03965-1

    Article  Google Scholar 

  13. Lee SH, Uy B, Kim SH et al (2011) Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading. J Constr Steel Res 67:1–13

    Google Scholar 

  14. Han LH, Hou C, Wang QL (2012) Square concrete filled steel tubular (CFST) members under loading and chloride corrosion: experiments. J Constr Steel Res 71:11–25

    Google Scholar 

  15. Nie J, Huang J, Fan J (2011) Experimental study on load-bearing behavior of rectangular CFST frame considering composite action of floor slab. J Build Struct 32:99–108

    Google Scholar 

  16. Ren Q-X, Han L-H, Lam D, Li W (2014) Tests on elliptical concrete filled steel tubular (CFST) beams and columns. J Constr Steel Res 99:149–160. https://doi.org/10.1016/j.jcsr.2014.03.010

    Article  Google Scholar 

  17. Jamaluddin N, Lam D, Dai XH, Ye J (2013) An experimental study on elliptical concrete filled columns under axial compression. J Constr Steel Res 87:6–16. https://doi.org/10.1016/j.jcsr.2013.04.002

    Article  Google Scholar 

  18. Lam D, Gardner L, Burdett M (2010) Behaviour of axially loaded concrete filled stainless steel elliptical stub columns. Adv Struct Eng 13:493–500. https://doi.org/10.1260/1369-4332.13.3.493

    Article  Google Scholar 

  19. Dai XH, Lam D, Jamaluddin N, Ye J (2014) Numerical analysis of slender elliptical concrete filled columns under axial compression. Thin-Walled Struct 77:26–35. https://doi.org/10.1016/j.tws.2013.11.015

    Article  Google Scholar 

  20. AS3600 AS (2001) Concrete structures. Standards Australia, Sydney

  21. AS4100 AS (1998) Steel structures. Standards Australia, NSW, Australia

  22. AISC (2010) Specification for structural steel buildings ANSI/AISC 360-16. American Institute of Steel Construction, Chicago

    Google Scholar 

  23. AIJ A (2001) Standards for Structural Calculation of Steel Reinforced Concrete Structures, 5th edn. Architectural Institute of Japan, Tokyo

    Google Scholar 

  24. Eurocode 4 (2004) Design of composite steel and concrete structures. Part 1.1, General rules and rules for buildings. European Committee for Standardization, British Standards Institution, London, UK

  25. Chinese Code DLT (1999) Chinese design code for steel-concrete composite structures. DL/T 5085-1999, Chinese Electricity Press, Beijing, China

  26. Giakoumelis G, Lam D (2004) Axial capacity of circular concrete-filled tube columns. J Constr Steel Res 60:1049–1068. https://doi.org/10.1016/j.jcsr.2003.10.001

    Article  Google Scholar 

  27. Lu Z-H, Zhao Y-G (2010) Suggested empirical models for the axial capacity of circular CFT stub columns. J Constr Steel Res 66:850–862

    Google Scholar 

  28. Han L-H, Yao G-H (2004) Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC). Thin-Walled Struct 42:1357–1377

    Google Scholar 

  29. Kenji Sakino, Hiroyuki Nakahara, Shosuke Morino, Isao Nishiyama (2004) Behavior of centrally loaded concrete-filled steel-tube short columns. J Struct Eng 130:180–188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)

    Article  Google Scholar 

  30. Hatzigeorgiou GD (2008) Numerical model for the behavior and capacity of circular CFT columns, Part I: theory. Eng Struct 30:1573–1578. https://doi.org/10.1016/j.engstruct.2007.11.001

    Article  Google Scholar 

  31. Hatzigeorgiou GD (2008) Numerical model for the behavior and capacity of circular CFT columns, Part II: verification and extension. Eng Struct 30:1579–1589. https://doi.org/10.1016/j.engstruct.2007.11.002

    Article  Google Scholar 

  32. Güneyisi EM, Gültekin A, Mermerdaş K (2016) Ultimate capacity prediction of axially loaded CFST short columns. Int J Steel Struct 16:99–114. https://doi.org/10.1007/s13296-016-3009-9

    Article  Google Scholar 

  33. Pham BT, Bui DT, Prakash I et al (2017) A comparative study of sequential minimal optimization-based support vector machines, vote feature intervals, and logistic regression in landslide susceptibility assessment using GIS. Environ Earth Sci 76:371

    Google Scholar 

  34. Jaafari A, Zenner EK, Pham BT (2018) Wildfire spatial pattern analysis in the Zagros Mountains, Iran: a comparative study of decision tree based classifiers. Ecol Inform 43:200–211

    Google Scholar 

  35. Pham BT, Nguyen MD, Dao DV et al (2019) Development of artificial intelligence models for the prediction of compression coefficient of soil: an application of monte carlo sensitivity analysis. Sci Total Environ 679:172–184. https://doi.org/10.1016/j.scitotenv.2019.05.061

    Article  Google Scholar 

  36. Dao DV, Ly H-B, Trinh SH et al (2019) Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete. Materials 12:983. https://doi.org/10.3390/ma12060983

    Article  Google Scholar 

  37. Dao DV, Trinh SH, Ly H-B, Pham BT (2019) Prediction of compressive strength of geopolymer concrete using entirely steel slag aggregates: novel hybrid artificial intelligence approaches. Appl Sci 9:1113. https://doi.org/10.3390/app9061113

    Article  Google Scholar 

  38. Ly H-B, Monteiro E, Le T-T et al (2019) Prediction and sensitivity analysis of bubble dissolution time in 3D selective laser sintering using ensemble decision trees. Materials 12:1544. https://doi.org/10.3390/ma12091544

    Article  Google Scholar 

  39. Güllü H (2012) Prediction of peak ground acceleration by genetic expression programming and regression: a comparison using likelihood-based measure. Eng Geol 141:92–113

    Google Scholar 

  40. Ly H-B, Le LM, Duong HT et al (2019) Hybrid artificial intelligence approaches for predicting critical buckling load of structural members under compression considering the influence of initial geometric imperfections. Appl Sci 9:2258. https://doi.org/10.3390/app9112258

    Article  Google Scholar 

  41. Le LM, Ly H-B, Pham BT et al (2019) Hybrid artificial intelligence approaches for predicting buckling damage of steel columns under axial compression. Materials 12:1670. https://doi.org/10.3390/ma12101670

    Article  Google Scholar 

  42. Ly H-B, Pham BT, Dao DV et al (2019) Improvement of ANFIS model for prediction of compressive strength of manufactured sand concrete. Appl Sci 9:3841. https://doi.org/10.3390/app9183841

    Article  Google Scholar 

  43. Dao DV, Adeli H, Ly H-B et al (2020) A Sensitivity and robustness analysis of GPR and ANN for high-performance concrete compressive strength prediction using a Monte Carlo simulation. Sustainability 12:830. https://doi.org/10.3390/su12030830

    Article  Google Scholar 

  44. Ly H-B, Le T-T, Le LM et al (2019) Development of hybrid machine learning models for predicting the critical buckling load of I-shaped cellular beams. Appl Sci 9:5458. https://doi.org/10.3390/app9245458

    Article  Google Scholar 

  45. Apostolopoulou M, Asteris PG, Armaghani DJ et al (2020) Mapping and holistic design of natural hydraulic lime mortars. Cem Concr Res 136:106167

    Google Scholar 

  46. Duan J, Asteris PG, Nguyen H et al (2020) A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model. Eng Comput 18:1–18

    Google Scholar 

  47. Asteris PG, Mokos VG (2019) Concrete compressive strength using artificial neural networks. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04663-2

    Article  Google Scholar 

  48. Güllü H (2017) A new prediction method for the rheological behavior of grout with bottom ash for jet grouting columns. Soils Found 57:384–396

    Google Scholar 

  49. Güllü H (2017) A novel approach to prediction of rheological characteristics of jet grout cement mixtures via genetic expression programming. Neural Comput Appl 28:407–420

    Google Scholar 

  50. Güllü H (2013) On the prediction of shear wave velocity at local site of strong ground motion stations: an application using artificial intelligence. Bull Earthq Eng 11:969–997

    Google Scholar 

  51. Güllü H (2014) Function finding via genetic expression programming for strength and elastic properties of clay treated with bottom Ash. Eng Appl Artif Intell 35:143–157

    Google Scholar 

  52. Güllü H, Fedakar HI (2017) On the prediction of unconfined compressive strength of silty soil stabilized with bottom ash, jute and steel fibers via artificial intelligence. Geomech Eng 12:441–464

    Google Scholar 

  53. Khosravi K, Sartaj M, Tsai FT-C et al (2018) A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Sci Total Environ 642:1032–1049

    Google Scholar 

  54. Bui DT, Tsangaratos P, Ngo P-TT et al (2019) Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods. Sci Total Environ 668:1038–1054

    Google Scholar 

  55. Pham BT, Prakash I, Dou J et al (2019) A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers. Geocarto Int 12:1–25

    Google Scholar 

  56. Pham BT, Prakash I, Jaafari A, Bui DT (2018) Spatial prediction of rainfall-induced landslides using aggregating one-dependence estimators classifier. J Indian Soc Remote Sens 46:1457–1470

    Google Scholar 

  57. Pham BT, Singh SK, Ly H-B (2020) Using Artificial Neural Network (ANN) for prediction of soil coefficient of consolidation. Vietnam J Earth Sci 42:189

    Google Scholar 

  58. Yariyan P, Janizadeh S, Van Phong T et al (2020) Improvement of best first decision trees using bagging and dagging ensembles for flood probability mapping. Water Resources Manag 6:1–17

    Google Scholar 

  59. Merghadi A, Yunus AP, Dou J et al (2020) Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Sci Rev 11:103225

    Google Scholar 

  60. Pham BT, Jaafari A, Avand M et al (2020) Performance evaluation of machine learning methods for forest fire modeling and prediction. Symmetry 12:1022

    Google Scholar 

  61. Van Phong T, Ly H-B, Trinh PT et al (2020) Landslide susceptibility mapping using Forest by Penalizing Attributes (FPA) algorithm based machine learning approach. Vietnam J Earth Sci 42:3

    Google Scholar 

  62. Haque ME, Sudhakar KV (2002) ANN back-propagation prediction model for fracture toughness in microalloy steel. Int J Fatigue 24:1003–1010

    Google Scholar 

  63. Mahdi E-S, Hany EK (2008) Crushing behavior of laterally compressed composite elliptical tubes: experiments and predictions using artificial neural networks. Compos Struct 83:399–412

    Google Scholar 

  64. Kim J, Ghaboussi J, Elnashai AS (2010) Mechanical and informational modeling of steel beam-to-column connections. Eng Struct 32:449–458

    Google Scholar 

  65. Younesi M, Bahrololoom ME, Ahmadzadeh M (2010) Prediction of wear behaviors of nickel free stainless steel–hydroxyapatite bio-composites using artificial neural network. Comput Mater Sci 47:645–654

    Google Scholar 

  66. Sanad A, Saka MP (2001) Prediction of ultimate shear strength of reinforced-concrete deep beams using neural networks. J Struct Eng 127:818–828

    Google Scholar 

  67. Mansour MY, Dicleli M, Lee JY, Zhang J (2004) Predicting the shear strength of reinforced concrete beams using artificial neural networks. Eng Struct 26:781–799

    Google Scholar 

  68. Adhikari BB, Mutsuyoshi H (2006) Prediction of shear strength of steel fiber RC beams using neural networks. Constr Build Mater 20:801–811

    Google Scholar 

  69. Cladera A, Mari AR (2004) Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part II: beams with stirrups. Eng Struct 26:927–936

    Google Scholar 

  70. Lee S-C (2003) Prediction of concrete strength using artificial neural networks. Eng Struct 25:849–857

    Google Scholar 

  71. Öztaşa A, Pala M, Özbay E et al (2006) Predicting the compressive strength and slump of high strength concrete using neural network. Constr Build Mater 20:769–775

    Google Scholar 

  72. Asteris PG, Kolovos KG (2019) Self-compacting concrete strength prediction using surrogate models. Neural Comput Appl 31:409–424. https://doi.org/10.1007/s00521-017-3007-7

    Article  Google Scholar 

  73. Asteris PG, Kolovos KG, Douvika MG, Roinos K (2016) Prediction of self-compacting concrete strength using artificial neural networks. Eur J Environ Civ Eng 20:s102–s122. https://doi.org/10.1080/19648189.2016.1246693

    Article  Google Scholar 

  74. Asteris PG, Roussis PC, Douvika MG (2017) Feed-forward neural network prediction of the mechanical properties of sandcrete materials. Sensors 17:1344. https://doi.org/10.3390/s17061344

    Article  Google Scholar 

  75. Guo Z, Sha W (2004) Modelling the correlation between processing parameters and properties of maraging steels using artificial neural network. Comput Mater Sci 29:12–28

    Google Scholar 

  76. Kesavan A, Deivasigamani M, John S, Herszberg I (2006) Damage detection in T-joint composite structures. Compos Struct 75:313–320

    Google Scholar 

  77. Nasiri S, Khosravani MR, Weinberg K (2017) Fracture mechanics and mechanical fault detection by artificial intelligence methods: a review. Eng Fail Anal 81:270–293

    Google Scholar 

  78. Hakim SJS, Razak HA (2014) Modal parameters based structural damage detection using artificial neural networks—a review. Smart Struct Syst 14:159–189

    Google Scholar 

  79. Plevris V, Asteris PG (2014) Modeling of masonry failure surface under biaxial compressive stress using Neural Networks. Constr Build Mater 55:447–461. https://doi.org/10.1016/j.conbuildmat.2014.01.041

    Article  Google Scholar 

  80. Chen H, Asteris PG, Jahed Armaghani D et al (2019) Assessing dynamic conditions of the retaining wall: developing two hybrid intelligent models. Appl Sci 9:1042. https://doi.org/10.3390/app9061042

    Article  Google Scholar 

  81. Kheyroddin A, Naderpour H, Ahmadi M (2013) Performance of circular concrete filled steel tube members subjected to axial loading. In: Proceedings of the fourth international conference on concrete & development, Tehran, Iran

  82. Du Y, Chen Z, Zhang C, Xiaochun C (2017) Research on axial bearing capacity of rectangular concrete-filled steel tubular columns based on artificial neural networks. Front Comput Sci 11:863–873

    Google Scholar 

  83. Sarir P, Chen J, Asteris PG et al (2019) Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns. Eng Comput. https://doi.org/10.1007/s00366-019-00808-y

    Article  Google Scholar 

  84. Jang J-SR (1993) ANFIS adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybernet. https://doi.org/10.1109/21.256541

    Article  Google Scholar 

  85. Sremac S, Tanackov I, Kopić M, Radović D (2018) ANFIS model for determining the economic order quantity. Decis Mak Appl Manag Eng 1:81–92

    Google Scholar 

  86. Stojčić M, Pamučar D, Mahmutagić E, Stević Ž (2018) Development of an ANFIS model for the optimization of a queuing system in warehouses. Information 9:240

    Google Scholar 

  87. Lukovac V, Pamučar D, Popović M, ĐJorović B (2017) Portfolio model for analyzing human resources: an approach based on neuro-fuzzy modeling and the simulated annealing algorithm. Expert Syst Appl 90:318–331

    Google Scholar 

  88. Committee ACI (2005) Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05). American Concrete Institute, Farmington Hills

  89. Japan (AIJ) AI of (1997) Recommendations for design and construction of concrete filled steel tubular structures. Architectural Institute of Japan, Japan

  90. Construction) C (Canadian I of S (2010) Handbook of steel construction.. CISC Toronto, ON, Canada

  91. Uenaka K (2014) Experimental study on concrete filled elliptical/oval steel tubular stub columns under compression. Thin-Walled Struct 78:131–137. https://doi.org/10.1016/j.tws.2014.01.023

    Article  Google Scholar 

  92. Yang H, Liu F, Chan T, Wang W (2017) Behaviours of concrete-filled cold-formed elliptical hollow section beam-columns with varying aspect ratios. Thin-Walled Struct 120:9–28. https://doi.org/10.1016/j.tws.2017.08.018

    Article  Google Scholar 

  93. Liu F, Wang Y, Chan T (2017) Behaviour of concrete-filled cold-formed elliptical hollow sections with varying aspect ratios. Thin-Walled Struct 110:47–61. https://doi.org/10.1016/j.tws.2016.10.013

    Article  Google Scholar 

  94. Jamaluddin N (2011) Behaviour of elliptical concrete-filled steel tube (CFT) columns under axial compression load. Phd, University of Leeds

  95. Yang H, Lam D, Gardner L (2008) Testing and analysis of concrete-filled elliptical hollow sections. Eng Struct 30:3771–3781. https://doi.org/10.1016/j.engstruct.2008.07.004

    Article  Google Scholar 

  96. McCann F, Gardner L, Qiu W (2015) Experimental study of slender concrete-filled elliptical hollow section beam-columns. J Constr Steel Res 113:185–194

    Google Scholar 

  97. Zhao XL, Packer JA (2009) Tests and design of concrete-filled elliptical hollow section stub columns. Thin-Walled Struct 47:617–628. https://doi.org/10.1016/j.tws.2008.11.004

    Article  Google Scholar 

  98. De Nardin S, El Debs ALHC (2007) Axial load behaviour of concrete-filled steel tubular columns. Proc Inst Civ Eng Struct Build 160:13–22. https://doi.org/10.1680/stbu.2007.160.1.13

    Article  Google Scholar 

  99. Ye Y, Han L-H, Sheehan T, Guo Z-X (2016) Concrete-filled bimetallic tubes under axial compression: experimental investigation. Thin-Walled Struct 108:321–332. https://doi.org/10.1016/j.tws.2016.09.004

    Article  Google Scholar 

  100. Mahgub M, Ashour A, Lam D, Dai X (2017) Tests of self-compacting concrete filled elliptical steel tube columns. Thin-Walled Struct 110:27–34

    Google Scholar 

  101. Chan T-M, Huai Y-M, Wang W (2015) Experimental investigation on lightweight concrete-filled cold-formed elliptical hollow section stub columns. J Constr Steel Res 115:434–444. https://doi.org/10.1016/j.jcsr.2015.08.029

    Article  Google Scholar 

  102. He L, Zhao Y, Lin S (2018) Experimental study on axially compressed circular CFST columns with improved confinement effect. J Constr Steel Res 140:74–81. https://doi.org/10.1016/j.jcsr.2017.10.025

    Article  Google Scholar 

  103. Yi S, Young B (2017) Experimental investigation of concrete-filled cold-formed steel elliptical stub columns. In: Tubular structures XVI, Proceedings of the 16th international symposium for tubular structures. Melbourne, Australia, pp 109–115

  104. Lai MH, Ho JCM (2014) Confinement effect of ring-confined concrete-filled-steel-tube columns under uni-axial load. Eng Struct 67:123–141. https://doi.org/10.1016/j.engstruct.2014.02.013

    Article  Google Scholar 

  105. Lai MH, Ho JCM (2014) Behaviour of uni-axially loaded concrete-filled-steel-tube columns confined by external rings. Struct Des Tall Spec Build 23:403–426. https://doi.org/10.1002/tal.1046

    Article  Google Scholar 

  106. Huang CS, Yeh Y-K, Liu G-Y et al (2002) Axial load behavior of stiffened concrete-filled steel columns. J Struct Eng 128:1222–1230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1222)

    Article  Google Scholar 

  107. Schneider Stephen P (1998) Axially loaded concrete-filled steel tubes. J Struct Eng 124:1125–1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)

    Article  Google Scholar 

  108. Skalomenos Konstantinos A, Kazuhiro Hayashi, Ryosuke Nishi et al (2016) Experimental behavior of concrete-filled steel tube columns using ultrahigh-strength steel. J Struct Eng 142:04016057. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001513

    Article  Google Scholar 

  109. Xiao J, Huang Y, Yang J, Zhang Ch (2012) Mechanical properties of confined recycled aggregate concrete under axial compression. Constr Build Mater 26:591–603. https://doi.org/10.1016/j.conbuildmat.2011.06.062

    Article  Google Scholar 

  110. Yang YF, Han LH (2012) Concrete filled steel tube (CFST) columns subjected to concentrically partial compression. Thin-Walled Struct 50:147–156. https://doi.org/10.1016/j.tws.2011.09.007

    Article  Google Scholar 

  111. Khalaf AA, Naser KZ, Kamil F (2018) Predicting the ultimate strength of circular concrete filled steel tubular columns by using artificial neural networks. Int J Civil Eng Technol 9:1724–1736

    Google Scholar 

  112. Tomii M, Yoshimura K, Morishita Y (1977) Experimental studies on concrete-filled steel tubular stub columns under concentric loading. ASCE, Washington, pp 718–741

    Google Scholar 

  113. Hayashi F (1990) Study on mechanical behavior of circular confined concrete column under axial compression. Kyushu University, Fukuoka

    Google Scholar 

  114. Witten IH, Frank E, Hall MA, Pal CJ (2016) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, Fukuoka

    Google Scholar 

  115. Wu Jy S, Jun Han, Shastri Annambhotla, Scott Bryant (2005) Artificial neural networks for forecasting watershed runoff and stream flows. J Hydrol Eng 10:216–222. https://doi.org/10.1061/(ASCE)1084-0699(2005)10:3(216)

    Article  Google Scholar 

  116. Ahmed AAM, Shah SMA (2017) Application of adaptive neuro-fuzzy inference system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma River. J King Saud Univ Eng Sci 29:237–243. https://doi.org/10.1016/j.jksues.2015.02.001

    Article  Google Scholar 

  117. Bilgehan M (2011) Comparison of ANFIS and NN models—with a study in critical buckling load estimation. Appl Soft Comput 11:3779–3791. https://doi.org/10.1016/j.asoc.2011.02.011

    Article  Google Scholar 

  118. Takagi T, Sugeno M (1983) Derivation of fuzzy control rules from human operator’s control actions. IFAC Proc Vol 16:55–60. https://doi.org/10.1016/S1474-6670(17)62005-6

    Article  Google Scholar 

  119. Simon D (2008) Biogeography-based optimization. IEEE Trans Evolut Comput 12:702–713

    Google Scholar 

  120. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95—international conference on neural networks, vol 4, pp 1942–1948

  121. Harish kundra Er, Gopika kakkar Er (2014) Biogeography based optimization its applications—a review. Int J Comput Sci Commun Eng 4:975

    Google Scholar 

  122. Ma H, Fei M, Simon D, Chen Z (2014) Biogeography-based optimization in noisy environments. Trans Inst Meas Control 37:190–204

    Google Scholar 

  123. Garg H (2015) An efficient biogeography based optimization algorithm for solving reliability optimization problems. Swarm Evolut Comput 24:1653

    MATH  Google Scholar 

  124. Reeves CR, Rowe JE (2002) Genetic algorithms: principles and perspectives: a guide to GA theory. Oper Res Comput Sci Interfaces Ser 20:1–326

    Google Scholar 

  125. Holland J (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  126. Mitchell M (1998) An introduction to genentic algorithms. MIT Press, Cambridge

    Google Scholar 

  127. Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4:65–85

    Google Scholar 

  128. Kim H, Shin K (2007) A hybrid approach based on neural networks and genetic algorithms for detecting temporal patterns in stock markets. Appl Soft Comput 7:569–576

    Google Scholar 

  129. Eberhart R, Kennedy J (2002) A new optimizer using particle swarm theory. In: Proceedings of the 6th international symposium on micromachine and human science

  130. Momeni E, Jahed Armaghani D, Hajihassani M, Mohd Amin MF (2015) Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement 60:50–63. https://doi.org/10.1016/j.measurement.2014.09.075

    Article  Google Scholar 

  131. Bui K-TT, Bui DT, Zou J et al (2016) A novel hybrid artificial intelligent approach based on neural fuzzy inference model and particle swarm optimization for horizontal displacement modeling of hydropower dam. Neural Comput Appl 27(8):12

    Google Scholar 

  132. Hu X, Eberhart R (2002) Solving constrained nonlinear optimization problems with particle swarm optimization. In: 6th world multiconference on systemics, cybernetics and informatics (SCI 2002. pp 203–206

  133. Khare A, Rangnekar S (2013) A review of particle swarm optimization and its applications in Solar Photovoltaic system. Appl Soft Comput 13:2997–3006. https://doi.org/10.1016/j.asoc.2012.11.033

    Article  Google Scholar 

  134. Christian Pds (2012) Stochastic models of uncertainties in computational mechanics. Am Soc Civ Eng, Reston

    MATH  Google Scholar 

  135. Soize C (2017) Uncertainty quantification: an accelerated course with advanced applications in computational engineering. Springer International Publishing, Berlin

    MATH  Google Scholar 

  136. Le TT, Guilleminot J, Soize C (2016) Stochastic continuum modeling of random interphases from atomistic simulations. Application to a polymer nanocomposite. Comput Methods Appl Mech Eng 303:430–449. https://doi.org/10.1016/j.cma.2015.10.006

    Article  MathSciNet  MATH  Google Scholar 

  137. Ly H-B, Desceliers C, Le LM et al (2019) Quantification of uncertainties on the critical buckling load of columns under axial compression with uncertain random materials. Materials 12:1828. https://doi.org/10.3390/ma12111828

    Article  Google Scholar 

  138. Guilleminot J, Le TT, Soize C (2013) Stochastic framework for modeling the linear apparent behavior of complex materials: application to random porous materials with interphases. Acta Mech Sin 29:773–782. https://doi.org/10.1007/s10409-013-0101-7

    Article  MathSciNet  MATH  Google Scholar 

  139. Soize C, Desceliers C, Guilleminot J et al (2015) Stochastic representations and statistical inverse identification for uncertainty quantification in computational mechanics. In: UNCECOMP 2015, 1st ECCOMAS thematic international conference on uncertainty quantification in computational sciences and engineering, pp 1–26

  140. Cunha A, Nasser R, Sampaio R et al (2014) Uncertainty quantification through the Monte Carlo method in a cloud computing setting. Comput Phys Commun 185:1355–1363. https://doi.org/10.1016/j.cpc.2014.01.006

    Article  Google Scholar 

  141. Fattahi H, Shojaee S, Farsangi MAE, Mansouri H (2013) Hybrid Monte Carlo simulation and ANFIS-subtractive clustering method for reliability analysis of the excavation damaged zone in underground spaces. Comput Geotech 54:210–221. https://doi.org/10.1016/j.compgeo.2013.07.010

    Article  Google Scholar 

  142. The MathWorks (2018) MATLAB. Natick, MA, USA

  143. Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geosci Model Dev 7:1247–1250

    Google Scholar 

  144. Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30:79–82. https://doi.org/10.3354/cr030079

    Article  Google Scholar 

  145. Pham BT, Le LM, Le T-T et al (2020) Development of advanced artificial intelligence models for daily rainfall prediction. Atmos Res 237:104845. https://doi.org/10.1016/j.atmosres.2020.104845

    Article  Google Scholar 

  146. Dao DV, Ly H-B, Vu H-LT et al (2020) Investigation and optimization of the C-ANN structure in predicting the compressive strength of foamed concrete. Materials 13:1072

    Google Scholar 

  147. Nguyen HQ, Ly H-B, Tran VQ et al (2020) Optimization of artificial intelligence system by evolutionary algorithm for prediction of axial capacity of rectangular concrete filled steel tubes under compression. Materials 13:1205

    Google Scholar 

  148. Pham BT, Nguyen-Thoi T, Ly H-B et al (2020) Extreme learning machine based prediction of soil shear strength: a sensitivity analysis using Monte Carlo simulations and feature backward elimination. Sustainability 12:2339

    Google Scholar 

  149. Ly H-B, Pham BT (2020) Prediction of shear strength of soil using direct shear test and support vector machine model. Open Constr Build Technol J 14:12

    Google Scholar 

  150. Ly H-B, Le T-T, Vu H-LT et al (2020) Computational hybrid machine learning based prediction of shear capacity for steel fiber reinforced concrete beams. Sustainability 12:2709

    Google Scholar 

  151. Güllü H, Erçelebi E (2007) A neural network approach for attenuation relationships: an application using strong ground motion data from Turkey. Eng Geol 93:65–81

    Google Scholar 

  152. Pham BT, Son LH, Hoang T-A et al (2018) Prediction of shear strength of soft soil using machine learning methods. CATENA 166:181–191. https://doi.org/10.1016/j.catena.2018.04.004

    Article  Google Scholar 

  153. Khosravi K, Shahabi H, Thai Pham B et al (2019) A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. J Hydrol. https://doi.org/10.1016/j.jhydrol.2019.03.073

    Article  Google Scholar 

  154. Cavaleri L, Asteris PG, Psyllaki PP et al (2019) Prediction of surface treatment effects on the tribological performance of tool steels using artificial neural networks. Appl Sci 9:2788. https://doi.org/10.3390/app9142788

    Article  Google Scholar 

  155. Psyllaki P, Stamatiou K, Iliadis I et al (2018) Surface treatment of tool steels against galling failure. MATEC Web Conf 188:04024. https://doi.org/10.1051/matecconf/201818804024

    Article  Google Scholar 

  156. Cavaleri L, Chatzarakis GE, Trapani FD et al (2017) Modeling of surface roughness in electro-discharge machining using artificial neural networks. Adv Mater Res 6:169. https://doi.org/10.12989/amr.2017.6.2.169

    Article  Google Scholar 

  157. Salcedo-Sanz S, Deo RC, Carro-Calvo L, Saavedra-Moreno B (2016) Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms. Theor Appl Climatol 125:13–25

    Google Scholar 

  158. Sharma A, Goyal MK (2015) Bayesian network model for monthly rainfall forecast. In: 2015 IEEE international conference on research in computational intelligence and communication networks (ICRCICN). IEEE, pp 241–246

  159. Güler İ, Übeyli ED (2005) Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J Neurosci Methods 148:113–121. https://doi.org/10.1016/j.jneumeth.2005.04.013

    Article  Google Scholar 

  160. Mashaly AF, Alazba AA (2018) ANFIS modeling and sensitivity analysis for estimating solar still productivity using measured operational and meteorological parameters. Water Supply 18:1437–1448. https://doi.org/10.2166/ws.2017.208

    Article  Google Scholar 

  161. Xiong G, Shi D, Duan X (2013) Multi-strategy ensemble biogeography-based optimization for economic dispatch problems. Appl Energy 111:801–811. https://doi.org/10.1016/j.apenergy.2013.04.095

    Article  Google Scholar 

  162. Wang S, Zhang Y, Ji G et al (2015) Fruit classification by wavelet-entropy and feedforward neural network trained by fitness-scaled chaotic ABC and biogeography-based optimization. Entropy 17:5711–5728. https://doi.org/10.3390/e17085711

    Article  Google Scholar 

  163. Almeida JHS, Ribeiro ML, Tita V, Amico SC (2017) Stacking sequence optimization in composite tubes under internal pressure based on genetic algorithm accounting for progressive damage. Compos Struct 178:20–26. https://doi.org/10.1016/j.compstruct.2017.07.054

    Article  Google Scholar 

  164. Bickel DR (2020) Testing prediction algorithms as null hypotheses: application to assessing the performance of deep neural networks. Stat 9:e270

    MathSciNet  Google Scholar 

  165. Lu M, Ishwaran H (2017) A machine learning alternative to P-values. arXiv preprint arXiv:170104944

  166. Ryll L, Seidens S (2019) Evaluating the performance of machine learning algorithms in financial market forecasting: a comprehensive survey. arXiv preprint arXiv:190607786

  167. Trafimow D, Amrhein V, Areshenkoff CN et al (2018) Manipulating the alpha level cannot cure significance testing. Front Psychol 9:699

    Google Scholar 

  168. Dahiru T (2008) P-value, a true test of statistical significance? A cautionary note. Ann Ibadan Postgraduate med 6:21–26

    Google Scholar 

  169. Kaur A, Kaur I (2018) An empirical evaluation of classification algorithms for fault prediction in open source projects. J King Saud Univ Computer Inf Sci 30:2–17

    Google Scholar 

  170. Jakubcová M, Máca P, Pech P (2014) A Comparison of selected modifications of the particle swarm optimization algorithm. In: Journal of Applied Mathematics. https://www.hindawi.com/journals/jam/2014/293087/. Accessed 21 Feb 2020

  171. Ding F, Ding X, Liu X et al (2017) Mechanical behavior of elliptical concrete-filled steel tubular stub columns under axial loading. Steel Compos Struct 25:375–388. https://doi.org/10.12989/scs.2017.25.3.375

    Article  Google Scholar 

  172. Han L-H, Yao G-H, Zhao X-L (2005) Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC). J Constr Steel Res 61:1241–1269. https://doi.org/10.1016/j.jcsr.2005.01.004

    Article  Google Scholar 

  173. Wang Z-B, Tao Z, Han L-H et al (2017) Strength, stiffness and ductility of concrete-filled steel columns under axial compression. Eng Struct 135:209–221. https://doi.org/10.1016/j.engstruct.2016.12.049

    Article  Google Scholar 

  174. Ding F, Fang C, Bai Y, Gong Y (2014) Mechanical performance of stirrup-confined concrete-filled steel tubular stub columns under axial loading. J Constr Steel Res 98:146–157. https://doi.org/10.1016/j.jcsr.2014.03.005

    Article  Google Scholar 

  175. Committee ACI (2011) 318-08: Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute, Farmington Hills

    Google Scholar 

  176. Dundu M (2012) Compressive strength of circular concrete filled steel tube columns. Thin-Walled Struct 56:62–70. https://doi.org/10.1016/j.tws.2012.03.008

    Article  Google Scholar 

  177. Zeghiche J, Chaoui K (2005) An experimental behaviour of concrete-filled steel tubular columns. J Constr Steel Res 61:53–66. https://doi.org/10.1016/j.jcsr.2004.06.006

    Article  Google Scholar 

  178. de Oliveira WLA, De Nardin S, de Cresce El Debs ALH, El Debs MK (2009) Influence of concrete strength and length/diameter on the axial capacity of CFT columns. J Constr Steel Res 65:2103–2110. https://doi.org/10.1016/j.jcsr.2009.07.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Binh Thai Pham, Tien-Thinh Le or Panagiotis G. Asteris.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ly, HB., Pham, B.T., Le, L.M. et al. Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models. Neural Comput & Applic 33, 3437–3458 (2021). https://doi.org/10.1007/s00521-020-05214-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05214-w

Keywords

Navigation