Skip to main content

Advertisement

Log in

Density-adaptive registration of pointclouds based on Dirichlet Process Gaussian Mixture Models

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

We propose an algorithm for rigid registration of pre- and intra-operative patient anatomy, represented as pointclouds, during minimally invasive surgery. This capability is essential for development of augmented reality systems for guiding such interventions. Key challenges in this context are differences in the point density in the pre- and intra-operative pointclouds, and potentially low spatial overlap between the two. Solutions, correspondingly, must be robust to both of these phenomena. We formulated a pointclouds registration approach which considers the pointclouds after rigid transformation to be observations of a global non-parametric probabilistic model named Dirichlet Process Gaussian Mixture Model. The registration problem is solved by minimizing the Kullback–Leibler divergence in a variational Bayesian inference framework. By this means, all unknown parameters are recursively inferred, including, importantly, the optimal number of mixture model components, which ensures the model complexity efficiently matches that of the observed data. By presenting the pointclouds as KDTrees, both the data and model are expanded in a coarse-to-fine style. The scanning weight of each point is estimated by its neighborhood, imparting the algorithm with robustness to point density variations. Experiments on several datasets with different levels of noise, outliers and pointcloud overlap show that our method has a comparable accuracy, but higher efficiency than existing Gaussian Mixture Model methods, whose performance is sensitive to the number of model components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Besl P, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Analy Mach Intel 14(2):239–256. https://doi.org/10.1109/34.121791

    Article  Google Scholar 

  2. Rusu RB, Blodow N, Beetz M (2009) Fast point feature histograms (FPFH) for 3D registration. In: IEEE Int Conf Robot Autom. IEEE, pp 3212–3217, https://doi.org/10.1109/ROBOT.2009.5152473, http://ieeexplore.ieee.org/document/5152473/

  3. Yang J, Li H, Campbell D et al. (2016) Go-ICP: a globally optimal solution to 3D ICP point-set registration. IEEE Trans Pattern Analy Mach Intel 38(11):2241–2254. https://doi.org/10.1109/TPAMI.2015.2513405

    Article  Google Scholar 

  4. Raguram R, Frahm JM, Pollefeys M (2008) A comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus. In: European Conference on Computer Vision, Springer, pp 500–513

  5. Ma J, Zhao J, Tian J et al. (2014) Robust point matching via vector field consensus. IEEE Trans Image Process 23(4):1706–1721. https://doi.org/10.1109/TIP.2014.2307478

    Article  PubMed Central  Google Scholar 

  6. Ma J, Zhao J, Jiang J et al. (2019) Locality preserving matching. Int J Comput Vision 127(5):512–531. https://doi.org/10.1007/s11263-018-1117-z

    Article  Google Scholar 

  7. Zhou QyY, Park J, Koltun V (2016) Fast Global Registration. In: Proceedings of the European Conference on Computer Vision, p 766–782, https://doi.org/10.1007/978-3-319-46475-6_47

  8. Maiseli B, Gu Y, Gao H (2017) Recent developments and trends in point set registration methods. J Vis Commun Image Represent 46:95–106. https://doi.org/10.1016/j.jvcir.2017.03.012

    Article  Google Scholar 

  9. Myronenko A, Song Xubo (2010) Point set registration: coherent point drift. IEEE Trans Pattern Analy Mach Intel 32(12):2262–2275. https://doi.org/10.1109/TPAMI.2010.46

    Article  Google Scholar 

  10. Gao W, Tedrake R (2019) FilterReg: robust and efficient probabilistic point-set registration using Gaussian filter and twist parameterization. Proc IEEE Conf Comput Vis Pattern Recognit 1:11095–11104

    Google Scholar 

  11. Adams A, Baek J, Davis MA (1981) Fast high-dimensional filtering using the permutohedral lattice. Comput Graphics Forum. https://doi.org/10.1111/j.1467-8659.2009.01645.x

    Article  Google Scholar 

  12. Jiayi M, Ji Z, Yuille AL (2016) Non-rgid point set registration by preserving global and local structures. IEEE Trans Image Process 25(1):53–64. https://doi.org/10.1109/TIP.2015.2467217

    Article  Google Scholar 

  13. Hirose O (2020) A Bayesian formulation of coherent point drift. IEEE Trans Pattern Analy Mach Intel. https://doi.org/10.1109/TPAMI.2020.2971687

    Article  Google Scholar 

  14. Eckart B, Kelly A (2013) REM-Seg: a robust em algorithm for parallel segmentation and registration of point clouds. In: IEEE International Conference on Intelligent Robots and Systems, p 4355–4362, https://doi.org/10.1109/IROS.2013.6696981

  15. Eckart B, Kim K, Troccoli A, et al. (2015) MLMD: maximum likelihood mixture decoupling for fast and accurate point cloud registration. In: Proceedings of international conference on 3D vision, 3DV 2015, p 241–249, https://doi.org/10.1109/3DV.2015.34

  16. Eckart B, Kim K, Kautz J (2018) HGMR: hierarchical Gaussian mixtures for adaptive 3D registration. In: Proceedings of the European conference on computer vision, vol 11219 LNCS. p 730–746, https://doi.org/10.1007/978-3-030-01267-0_43, http://link.springer.com/10.1007/978-3-030-01267-0_43

  17. Evangelidis GD, Kounades-Bastian D, Horaud R, et al. (2014) A generative model for the joint registration of multiple point sets. In: Cham (ed) European conference on computer vision, vol 8695 LNCS. Springer, p 109–122, https://doi.org/10.1007/978-3-319-10584-0_8

  18. Meng XL, Rubin DB (1993) Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80(2):267–278

    Article  Google Scholar 

  19. Danelljan M, Meneghetti G, Khan FS, et al. (2016) A probabilistic framework for color-based point set registration. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition 2016 Dec, p 1818–1826. https://doi.org/10.1109/CVPR.2016.201

  20. Lawin FJ, Danelljan M, Khan FS, et al. (2018) Density adaptive point set registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, p 3829–3837

  21. Ravikumar N, Gooya A, Çimen S, et al. (2016) A multi-resolution T-mixture model approach to robust group-wise alignment of shapes. In: International conference on medical image computing and computer-assisted intervention, lecture notes in computer science, vol 9902. Springer International Publishing, p 142–149, https://doi.org/10.1007/978-3-319-46726-9_17

  22. Ravikumar N, Gooya A, Çimen S et al. (2018) Group-wise similarity registration of point sets using student’s t-mixture model for statistical shape models. Med Image Anal 44:156–176. https://doi.org/10.1016/j.media.2017.11.012

    Article  PubMed  Google Scholar 

  23. Ravikumar N, Gooya A, Frangi AF et al. (2017) Generalised coherent point drift for group-wise registration of multi-dimensional point sets. In: Descoteaux M, Maier-Hein L, Franz A et al. (eds) International conference on medical image computing and computer-assisted intervention, vol 10433. Lecture notes in computer science. Springer International Publishing, Cham, pp 309–316

    Google Scholar 

  24. Ravikumar N, Gooya A, Beltrachini L et al. (2019) Generalised coherent point drift for group-wise multi-dimensional analysis of diffusion brain MRI data. Med Image Anal 53:47–63. https://doi.org/10.1016/j.media.2019.01.001

    Article  PubMed  Google Scholar 

  25. Zhang M, Yang C, Wei L et al. (2017) Non-rigid point set registration via coherent spatial mapping and local structures preserving. Proceedings–15th international symposium on parallel and distributed computing. ISPDC 2016:382–385. https://doi.org/10.1109/ISPDC.2016.64

    Article  Google Scholar 

  26. Ma J, Wu J, Zhao J et al. (2019) Nonrigid point set registration with robust transformation learning under manifold regularization. IEEE Trans Neural Netw Learn Syst 30(12):3584–3597. https://doi.org/10.1109/TNNLS.2018.2872528

    Article  PubMed  Google Scholar 

  27. Yang Y, Ong SH, Foong KWC (2015) A robust global and local mixture distance based non-rigid point set registration. Pattern Recogn 48(1):156–173. https://doi.org/10.1016/j.patcog.2014.06.017

    Article  Google Scholar 

  28. Chen J, Ma J, Yang C et al. (2015) Non-rigid point set registration via coherent spatial mapping. Signal Process 106:62–72. https://doi.org/10.1016/j.sigpro.2014.07.004

    Article  Google Scholar 

  29. Peterlík I, Courtecuisse H, Rohling R et al. (2018) Fast elastic registration of soft tissues under large deformations. Med Image Anal 45:24–40. https://doi.org/10.1016/j.media.2017.12.006

    Article  PubMed  Google Scholar 

  30. Kondarasaiah MH, Ananda S (2006) Pattern recognition and machine learning, vol 27

  31. Campbell D, Petersson L (2015) An adaptive data representation for robust point-set registration and merging. Proceedings of the IEEE International Conference on Computer Vision 2015 Inter:4292–4300. https://doi.org/10.1109/ICCV.2015.488, arXiv:1511.04240

  32. Greengard L, Strain J (1991) The fast Gauss transform. SIAM J Sci Stat Comput 12(1):79–94

    Article  Google Scholar 

  33. Yang C, Duraiswami R, Gumerov NA, et al. (2003) Improved fast gauss transform and efficient kernel density estimation. IEEE

  34. Williams CKI, Seeger M (2001) Using the Nyström method to speed up kernel machines. In: Advances in neural information processing systems, p 682–688

  35. Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM 18(9):509–517

    Article  Google Scholar 

  36. Hemant I, Lancelot FJ (2001) stickBreaking. J Am Stat Assoc 96:453

    Google Scholar 

  37. Kurihara K, Welling M, Vlassis N (2007) Accelerated variational Dirichlet process mixtures. Adv Neural Info Process Syst. https://doi.org/10.7551/mitpress/7503.003.0100

    Article  Google Scholar 

  38. Theiler PW, Wegner JD, Schindler K (2015) Globally consistent registration of terrestrial laser scans via graph optimization. ISPRS J Photogramm Remote Sens 109:126–138. https://doi.org/10.1016/j.isprsjprs.2015.08.007

    Article  Google Scholar 

Download references

Funding

This work was supported by grants from National Key R &D Program of China (2022YFE0197900), the National Natural Science Foundation of China (81971709; M-0019; 82011530141), the Foundation of Science and Technology Commission of Shanghai Municipality (20490740700),Shanghai Jiao Tong University Foundation on Medical and Technological Joint Science Research (YG2021ZD21; YG2021QN72; YG2022QN056), the Hospital Funded Clinical Research by Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (21XJMR02), 2020 Key Research Project of Xiamen Municipal Government (3502Z20201030), and the Royal Academy of Engineering Leverhulme Trust Research Fellowships programme (LTRF2021-17115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Chen.

Ethics declarations

Conflict of interest

All of these authors have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Appendix A: some derivations and positive semidefinite rotation matrix objective function

Appendix A: some derivations and positive semidefinite rotation matrix objective function

  1. 1.

    Derivation of \(q^{\star }(v_k)\)

Equation 10 in Sect. "Variational inference of Dirichlet Process Gaussian Mixture Model" is deduced as follows:

$$\begin{aligned} \begin{aligned} \ln q^{\star }(v_k)&=E_{{\varvec{V}}_{-k}}[\ln p(v_k\mid \varvec{\alpha })]\\&\quad +\sum _i\sum _j\sum _{l=1}^{\infty }E_{{\varvec{Z}}}[\ln p(z_{ij}=l\mid {\varvec{V}})]\\&=\ln \left[ \frac{\varGamma (\alpha _1+\alpha _2)}{\varGamma (\alpha _1)\varGamma (\alpha _2)}v_k^{\alpha _1}(1-v_k)^{\alpha _2}\right] \\&\quad +\sum _{i}\sum _{j}\sum _{l=1}^{\infty }q(z_{ij}=l\mid {\varvec{V}})\\&\propto \left( \alpha _1-1+\sum _i\sum _j q(z_{ij}=k)\right) v_k \\&\quad +\left( \alpha _2-1+\sum _i\sum _j\sum _{l=k+1}^{\infty }q(z_{ij}=l)\right) \\&\quad \times (1-v_k) +\textrm{const}. \end{aligned} \end{aligned}$$
(A1)
  1. 2.

    Derivation of \(\rho _{ij,k}\) involved in the update of \(q^{\star }({\varvec{Z}})\).

$$\begin{aligned} \begin{aligned} \rho _{ij,k}&=E_{V}[\ln p(z_{ij}=k \mid {\varvec{V}})]+E_{\varvec{\theta }_k}[\ln p({\varvec{x}}_{ij}\mid \varvec{\theta }_k)]\\&= E_{v_k}[\ln v_k]+\sum _{l=1}^{k-1}E_{v_l}[\ln (1-v_l)]\\&\qquad -E_{\Sigma _k}[\ln ((2\pi )^{d/2}\vert \Sigma _k\vert ^{1/2})]\\&\qquad -\frac{1}{2}E_{\varvec{\theta }_k}[({\varvec{x}}_{ij} -\varvec{\mu }_k)^{\textrm{T}}\Sigma _k^{-1}({\varvec{x}}_{ij}-\varvec{\mu }_k)]. \end{aligned} \end{aligned}$$
(A2)
  1. 3.

    The derivation of the objective function to solve the rigid transformation between input pointclouds and the global coordinate system.

$$\begin{aligned} \begin{aligned}&\varepsilon ({\varvec{R}}_i,{\varvec{t}}_i) =E_{\varvec{Z,\theta }}[ f({\varvec{X}}_i)\ln p({\varvec{X}}_i\mid \varTheta )]\\&\quad =\sum _{j=1}^{N_i}f ({\varvec{x}}_{ij})\left( \sum _{k=1}^{L}E_{q(z_{ij}=k)\delta _k(z_{ij})}E_{q(\varvec{\theta }_k)}[\ln {\mathcal {N}}({\varvec{x}}_{ij};\varvec{\theta }_k)]\right. \\&\qquad \left. +\left( 1-\sum _{l=1}^{L}\pi _l\right) E_{p(\varvec{\theta }_0 \mid \varvec{\lambda })}[\ln {\mathcal {N}}({\varvec{x}}_{ij} \mid \varvec{\theta }_0)]\right) \\&\quad =\sum _{j=1}^{N_i}f({\varvec{x}}_{ij})\left( \sum _{k=1}^{L}\gamma ^{\star }_{ijk}(\Phi ({\varvec{x}}_{ij})-\bar{\varvec{\mu }}_k)^{\textrm{T}}\bar{\Sigma }_k^{-1}(\Phi ({\varvec{x}}_{ij})-\bar{\varvec{\mu }}_k)\right. \\&\qquad +\left( 1-\sum _{l=1}^{L}\gamma ^{\star }_{ijl}\right) \left. (\Phi ({\varvec{x}}_{ij})-\varvec{\mu }_0)^{\textrm{T}}\Sigma _0^{-1}(\Phi ({\varvec{x}}_{ij})-\varvec{\mu }_0)\right) \end{aligned} \end{aligned}$$
(A3)
  1. 4.

    Positive semidefinite rotation matrix objective function. By replacing the rotation matrix \({\textbf{R}}_i\) with its vector representation \({\textbf{r}}_i=\textrm{Vec}({\textbf{R}}_i)\), \({\textbf{r}}_i \in {\mathcal {R}}^{9\times 1}\), the objective function Eq. 20 for solving the rotation matrix can be recast in the general form:

$$\begin{aligned} \begin{aligned} \varepsilon ({\textbf{r}}_i)={\textbf{r}}_i^{\textrm{T}}M{\textbf{r}}_i+2{\textbf{b}}^{\textrm{T}}{\textbf{r}}_i. \end{aligned} \end{aligned}$$
(A4)

The orthogonality constraints \({\textbf{R}}_i{\textbf{R}}_i^{\textrm{T}}={\textbf{I}}\) similarly become:

$$\begin{aligned} {\textbf{r}}_i^{\textrm{T}}\Delta _{kl}{\textbf{r}}_i=\delta _{kl}, k=1,2,3; l=1,2,3. \end{aligned}$$
(A5)

Here \(\delta _{kl}=1\) when \(k=l\), otherwise \(\delta _{kl}=0\). \(\Delta _{kl}\) are six symmetric \(9\times 9\) matrices, that can be easily obtained from \({\textbf{R}}_i{\textbf{R}}_i^{\textrm{T}}={\textbf{I}}\).

To eliminate the first order term \(2{\textbf{b}}^{\textrm{T}}{\textbf{r}}_i\) in \({\textbf{r}}_i\), we let \(\mathbf {r'}_i=\{r_i[1],r_i[2],....,r_i[9],1\}\), so that Eq. A4 can be rewritten as

$$\begin{aligned} \varepsilon (\mathbf {r'}_i)=\mathbf {r'}_i^{\textrm{T}}M'\mathbf {r'}_i, \end{aligned}$$
(A6)

in which

$$\begin{aligned} M'=\begin{pmatrix} M&{}b\\ b^{T}&{}0 \end{pmatrix}. \end{aligned}$$

The constraints are then reformulated as:

$$\begin{aligned} \mathbf {r'}_i^{\textrm{T}}\Delta '_{kl}\mathbf {r'}_i=\delta _{kl}, k=1,2,3; l=1,2,3, \end{aligned}$$
(A7)

with

$$\begin{aligned} \Delta '_{kl}=\begin{pmatrix} \Delta _{kl}&{}{\textbf{0}}\\ {\textbf{0}}&{}1 \end{pmatrix}. \end{aligned}$$

Finally, the optimized problem of solving the rotation matrix \({\textbf{R}}_i\) can be formulated in the standard positive semidefinite optimization problem form as:

$$\begin{aligned} \begin{aligned} {{\rho }_i}&=\mathop {{{\,\mathrm{arg\,min}\,}}}_{{\rho }_i} tr(M', {\rho }_i)\\&s.t.\quad {\left\{ \begin{array}{ll} {{\rho }_i} =\mathbf {r'}_i\mathbf {r'}_i^{{\textbf{T}}}\\ {{\rho }_i}[10,10]=1\\ tr(\Delta '_{kl},{{\rho }_i})=\delta _{kl}.\\ \end{array}\right. } \end{aligned} \end{aligned}$$
(A8)

Once \({\rho }_i\) is solved, \({\textbf{r}}_i\) is obtained as \({\textbf{r}}_i={\rho }_i[1:9,10]\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, T., Taylor, Z.A. & Chen, X. Density-adaptive registration of pointclouds based on Dirichlet Process Gaussian Mixture Models. Phys Eng Sci Med 46, 719–734 (2023). https://doi.org/10.1007/s13246-023-01245-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-023-01245-4

Keywords

Navigation