Skip to main content
Log in

Female meiosis in plants, and differential recombination in the two sexes: a perspective

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Studying female meiosis in plants have eluded the plant cytogeneticists owing to the technical challenges faced while handling and ensuring an intact Embryo sac mother cell (EMC) with analyzable chromosomes. This made the study of male meiosis the favorite of cytogeneticists who could examine a large sample of Pollen mother cells (PMCs) with ease. Consequently, the meiotic behavior of female sex track was inferred from the male sex cells assuming that synchrony existed between the two cells. However, the comparative meiotic studies, though carried out in small number of plant species, revealed differential behavior of chromosomes in two sex cells which did not follow any sex specific pattern. Variation in chiasma frequency and its position have been noticed in the two sex cells indicating differential contribution of two sexes in releasing genetic variants. Since recombination data is crucial to a breeder longing to develop novel varieties by creating plants with desirable set of genes, the study of female meiosis assumes greater significance. The present review summarizes the asynchrony examined in the two types of sex cells along with the possible causal factors responsible for this.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun. 2018;9(1):1–13. https://doi.org/10.1038/s41467-018-04252-2.

    Article  CAS  Google Scholar 

  2. Allard RW. Evidence for genetic restriction of recombination in the lima bean. Genetics. 1963;48(10):1389. https://doi.org/10.1093/genetics/48.10.1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Armstrong SJ, Jones GH. Female meiosis in wild-type Arabidopsis thaliana and in two meiotic mutants. Sex Plant Reprod. 2001;13(4):177–83. https://doi.org/10.1007/s004970000050.

    Article  Google Scholar 

  4. Armstrong SJ, Jones GH. Meiotic cytology and chromosome behaviour in wild-type Arabidopsis thaliana. J Exp Bot. 2003;54(380):1.

    Article  CAS  PubMed  Google Scholar 

  5. Bajon C, Horlow C, Motamayor JC, Sauvanet A, Robert D. Megasporogenesis in Arabidopsis thaliana L.: an ultrastructural study. Sex Plant Reprod. 1999;12:99–109.

    Article  Google Scholar 

  6. Barrell PJ, Grossniklaus U. Confocal microscopy of whole ovules foe analysis of reproductive development: the elongate 1 mutant affects meiosis II. Plant J. 2005;43:309–20. https://doi.org/10.1111/j.1365-313X.2005.02456.x.

    Article  CAS  PubMed  Google Scholar 

  7. Bennett MD, Rees H. Induced variation in chiasma frequency in rye in response to phosphate treatments. Genet Res. 1970;16(3):325–31. https://doi.org/10.1017/S0016672300002585.

    Article  Google Scholar 

  8. Bennett MD, Finch RA, Smith JB, Rao MK. The time and duration of female meiosis in wheat, rye and barley. Proceedings of the royal society of London. Series B. biological sciences. 1973 183(1072): 301-19.

  9. Bergerat A, De Massy B, Gadelle D, Varoutas PC, Nicolas A, Forterre P. An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature. 1997;386(6623):414–7. https://doi.org/10.1038/386414a0.

    Article  CAS  PubMed  Google Scholar 

  10. Beying N, Schmidt C, Pacher M, Houben A, Puchta H. CRISPR–Cas9-mediated induction of heritable chromosomal translocations in Arabidopsis. Nature Plants. 2020;6(6):638–45.

    Article  CAS  PubMed  Google Scholar 

  11. Bhatt AM, Canales C, Dickinson HG. Plant meiosis: the means to 1N. Trends Plant Sci. 2001;6(3):114–21. https://doi.org/10.1016/S1360-1385(00)01861-6.

    Article  CAS  PubMed  Google Scholar 

  12. Bhowmick BK, Jha S. Dynamics of sex expression and chromosome diversity in Cucurbitaceae: a story in the making. J Genet. 2015;94(4):793–808.

    Article  PubMed  Google Scholar 

  13. Bhowmick BK, Jha S. A critical review on cytogenetics of Cucurbitaceae with updates on Indian taxa. Comp Cytogen. 2022;16(2):93–125.

    Article  Google Scholar 

  14. Bhowmick BK, Jha TB, Jha S. Chromosome analysis in the dioecious cucurbit Coccinia grandis (L.) Voigt. Chromosome Sci. 2012;15(1+2):9–15.

    CAS  Google Scholar 

  15. Boateng KA, Yang X, Dong F, Owen HA, Makaroff CA. SWI1 is required for meiotic chromosome remodelling events. MolPlant. 2008;1(4):620–33. https://doi.org/10.1093/mp/ssn030.

    Article  CAS  Google Scholar 

  16. Brock RD. Fertility in Lilium hybrids. Heredity. 1954;8(3):409–20. https://doi.org/10.1038/hdy.1954.42.

    Article  Google Scholar 

  17. Brunner E, Yagi R, Debrunner M, Beck-Schneider D, Burger A, Escher E, Mosimann C, Hausmann G, Basler K. CRISPR-induced double-strand breaks trigger recombination between homologous chromosome arms. Life sci alliance. 2019. https://doi.org/10.26508/lsa.201800267.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cao L, Alani E, Kleckner N. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell. 1990;61(6):1089–101.

    Article  CAS  PubMed  Google Scholar 

  19. Cao L, Wang S, Zhao L, Qin Y, Wang H, Cheng Y. The Inactivation of Arabidopsis UBC22 results in abnormal chromosome segregation in female meiosis, but not in male meiosis. Plants. 2021;10(11):2418. https://doi.org/10.3390/plants10112418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen K, Wang Y, Zhang R, Zhang H, Gao C. CRISPR/cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol. 2019;70(1):667–97. https://doi.org/10.1146/annurev-arplant-050718-100049.

    Article  CAS  PubMed  Google Scholar 

  21. Couteau F, Belzile F, Horlow C, Grandjean O, Vezon D, Doutriaux MP. Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmc1 mutant of Arabidopsis. Plant Cell. 1999;11(9):1623–34. https://doi.org/10.1105/tpc.11.9.1623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Darlington CD, La Cour LF. The handling of chromosomes. London: George Allen and Unwin; 1976.

    Google Scholar 

  23. Darlington CD, La Cour LF. The causal sequence of meiosis. J Genet. 1940;41(1):49–64.

    Article  Google Scholar 

  24. Darlington CD. The control of the chromosomes by the genotype and its bearing on some evolutionary problems. Am Nat. 1932;66(702):25–51.

    Article  Google Scholar 

  25. Davies EDG, Jones GH. Chiasma variation and control in pollen mother cells and embryo-sac mother cells of rye. Genet Res. 1974;23(2):185–90. https://doi.org/10.1017/S0016672300014804.

    Article  Google Scholar 

  26. D’cruz R, Reddy PS. A modified Bradley’s squash technique for studying embryo sacs in Gramineae. Stain Technol. 1967;42(5):237–40. https://doi.org/10.3109/10520296709115016.

    Article  CAS  PubMed  Google Scholar 

  27. De Winton D, Haldane JBS. The genetics of Primula sinensis. J Genet. 1935;31(1):67–100. https://doi.org/10.1007/BF02982281.

    Article  Google Scholar 

  28. d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Simon M, Jenczewski E, Mercier R. Mutations in AtPS1 (Arabidopsis thaliana parallel spindle 1) lead to the production of diploid pollen grains. PLoS Genet. 2008;4(11):e1000274.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Divashuk MG, Alexandrov OS, Razumova OV, Kirov IV, Karlov GI. Molecular cytogenetic characterization of the dioecious Cannabis sativa with an XY chromosome sex determination system. PLoS ONE. 2014;9(1):e85118.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Drews GN, Koltunow AM. The female gametophyte. The Arabidopsis book. 2011. https://doi.org/10.1199/tab.0155.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Drouaud J, Mercier R, Chelysheva L, Berard A, Falque M, Martin O, Zanni V, Brunel D, Mezard C. Sex specific crossover distributions and variation in interference level along Arabidopsis thaliana chromosome 4. PLoS Genet. 2007;3: e106.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fogwill M. Difference in crossing over and chromosome size in sex cells of Lilium and Fritillaria. Chromosoma. 1958;77:123–7.

    Google Scholar 

  33. Francis KE, Lam SY, Harrison BD, Bey AL, Berchowitz LE, Copenhaver GP. Pollen tetrad-based visual assay for meiotic recombination in Arabidopsis. Proc Nat AcadSc. 2007;104(10):3913–8. https://doi.org/10.1073/pnas.0608936104.

    Article  CAS  Google Scholar 

  34. Ghosh I, Saha PS, Bhowmick BK, Jha S. A phylogenetic analysis of Momordica (Cucurbitaceae) in India based on karyo-morphology, nuclear DNA content and rDNA ITS1–5.8 S-ITS2 sequences. Protoplasma. 2021;258(2):347–60.

    Article  CAS  PubMed  Google Scholar 

  35. Gohil RN, Ashraf M. Chromosome behaviour during micro-and megasporogenesis and the development of embryosac in Vicia faba L. Cytologia. 1984;49(4):697–701. https://doi.org/10.1508/cytologia.49.697.

    Article  Google Scholar 

  36. Gohil RN, Kaul R. Studies on male and female meiosis in Indian Allium. Chromosoma. 1980;77(2):123–7. https://doi.org/10.1007/BF00329538.

    Article  Google Scholar 

  37. Gohil RN, Kaul R. Studies on male and female meiosis in Indian Allium. Chromosoma. 1981;82(5):735–9. https://doi.org/10.1007/BF00285778.

    Article  Google Scholar 

  38. Golubovskaya I, Grebennikova ZK, Avalkina NA, Sheridan WF. The role of the ameiotic1 gene in the initiation of meiosis and in subsequent meiotic events in maize. Genetics. 1993;135(4):1151–66. https://doi.org/10.1093/genetics/135.4.1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Golubovskaya IN, Grebennikova ZK, Auger DL, Sheridan WF. The maize desynaptic1 mutation disrupts meiotic chromosome synapsis. Dev Genet. 1997;21(2):146–59. https://doi.org/10.1002/(SICI)1520-6408(1997)21:2%3c146::AID-DVG4%3e3.0.CO;2-7.

    Article  Google Scholar 

  40. Grelon M, Vezon D, Gendrot G, Pelletier G. AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J. 2001;20(3):589–600. https://doi.org/10.1093/emboj/20.3.589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hakansson A, Levan A. Endo-duplicational meiosis in Allium odorum. Hereditas. 1957;43(2):179–200. https://doi.org/10.1111/j.1601-5223.1957.tb03435.x.

    Article  Google Scholar 

  42. Hamant O, Ma H, Cande WZ. Genetics of meiotic prophase I in plants. Ann Rev Pl Bio. 2006;57(1):267–302. https://doi.org/10.1146/annurev.arplant.57.032905.105255.

    Article  CAS  Google Scholar 

  43. Haque A. Squash method for meiosis in ovules. Stain Technol. 1954;29(3):109–12. https://doi.org/10.3109/10520295409115453.

    Article  CAS  PubMed  Google Scholar 

  44. Harrison CJ, Alvey E, Henderson IR. Meiosis in flowering plants and other green organisms. J Exp Bot. 2010;61(11):2863–75. https://doi.org/10.1093/jxb/erq191.

    Article  CAS  PubMed  Google Scholar 

  45. Hasan MM, Rafi MY, Ismail MR, Mahmood M, Rahim HA, Alam MA, Ashkani S, Malek MA, Latif MA. Marker-assisted backcrossing: a useful method for rice improvement. Biotechnol Biotechnol Equip. 2015;29(2):237–54. https://doi.org/10.1080/13102818.2014.995920.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Havekes FW, Jong JHD, Heyting C. Comparative analysis of female and male meiosis in three meiotic mutants of tomato. Genome. 1997;40(6):879–86. https://doi.org/10.1139/g97-814.

    Article  CAS  PubMed  Google Scholar 

  47. Herr JM Jr. (1971) A new clearing-squash technique for the study of ovule development in angiosperms. Am J Bot. 1971;58(8):785–90. https://doi.org/10.1002/j.1537-2197.1971.tb10031.x.

    Article  Google Scholar 

  48. Heyting C. Synaptonemal complexes: structure and function. Curr Op Cell Bio. 1996;8(3):389–96. https://doi.org/10.1016/S0955-0674(96)80015-9.

    Article  CAS  Google Scholar 

  49. Hillary BB. Uses of the Feulgen reaction in cytology II. New techniques and special applications. Bot Gaz. 1940;102(2):225–35.

    Article  CAS  Google Scholar 

  50. Iwanaga M, Peloquin SJ. Synaptic mutant affecting only megasporogenesis in potatoes. J Hered. 1979;70(6):385–9. https://doi.org/10.1093/oxfordjournals.jhered.a109282.

    Article  Google Scholar 

  51. Jongedijk E. A quick enzyme Squash technique for detailed studies on female meiosis in Solanum: stain technology. Stain technol. 1987;62(3):135–41. https://doi.org/10.3109/10520298709107983.

    Article  CAS  PubMed  Google Scholar 

  52. Kearsey MJ, Ramsay LD, Jennings DE, Lydiate DJ, Bohuon EJR, Marshall DF. Higher recombination frequencies in female compared to male meiosis in Brassica oleracea. Theor Appl Genet. 1996;92(3):363–7. https://doi.org/10.1007/BF00223680.

    Article  CAS  Google Scholar 

  53. Kleckner N. Meiosis: how could it work? Proc Nat Acad Sci. 1996;93(16):8167–74. https://doi.org/10.1073/pnas.93.16.816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Koduru PRK, Rao MK. Cytogenetics of synaptic mutants in higher plants. TheorAppl Genet. 1981;59(4):197–214. https://doi.org/10.1007/BF00265494.

    Article  CAS  Google Scholar 

  55. Koul AK. Two track heredity in hermaphrodite angiosperms. Phytomorphology. 1983;33:137–42.

    Google Scholar 

  56. Koul KK, Gohil RN. Male and female meiosis in Calamagrostis stoliczkai Hook. J Cytol Genet. 1989;24:164–6.

    Google Scholar 

  57. Koul KK, Nagpal R. Sex incidences of chiasmata variation in respect of position, distribution and frequency in some important legumes and grasses. Caryologia. 2002;55(3):251–61. https://doi.org/10.1080/00087114.2002.10589285.

    Article  Google Scholar 

  58. Koul KK, Nagpal R. Male and female meiosis in Nicotiana tabacum L. Cytologia. 2004;69(3):285–9.

    Article  Google Scholar 

  59. Koul KK, Nagpal R, Nain K. Male and female meiosis evince differential patterns in chiasma formation: a case study of ornamental plant. Delphinium ajacis L J Genet. 2020;99(1):1–7. https://doi.org/10.1007/s12041-020-1179-x.

    Article  CAS  Google Scholar 

  60. Koul KK, Nagpal R, Raina SN. Differential chromosome behaviour in the male and female sex cells of Brassica oxyrrhina Coss (Brassicaceae). Caryologia. 1995;48(3–4):335–9.

    Article  Google Scholar 

  61. Koul KK, Nagpal R, Sharma A. Temperature influenced variation in the chromosomal behaviour of male and female sex cells in Sunn hemp (Crotalaria juncea Linn., Fabaceae). Caryologia. 2000;53(2):113–20.

    Article  Google Scholar 

  62. Koul KK, Nagpal R, Sharma A. Chromosome behaviour in the male and female sex mother cells of wheat (Triticum aestivum L.), oat (Avena sativa L.) and pearl millet (Pennisetum americanum (L.) Leeke). Caryologia. 2000;53(3–4):175–83.

    Article  Google Scholar 

  63. Koul KK, Raina SN. Male and female meiosis in diploid and colchitetraploid Phlox drummondii Hook (Polemoniaceae). Bot J Linn Soc. 1996;122:243–51.

    Google Scholar 

  64. Koul KK, Raina SN, Parida A, Bisht MS. Sex differences in meiosis between Vicia faba L. and its close wild relatives. Bot J Linn Soc. 1999;129(3):239–47. https://doi.org/10.1111/j.1095-8339.1999.tb00503.x.

    Article  Google Scholar 

  65. Liu M, Zhang W, Xin C, Yin J, Shang Y, Ai C, Li J, Meng FL, Hu J. Global detection of DNA repair outcomes induced by CRISPR–Cas9. Nucl acids Res. 2021;49(15):8732–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Maheshwari P, Johri BM. Development of the embryo sac, embryo and endosperm in Helixanthera ligustrina (wall.) dans. Nature. 1950;165(4207):978–9. https://doi.org/10.1038/165978c0.

    Article  CAS  PubMed  Google Scholar 

  67. Maloisel L, Rossignol JL. Suppression of crossing-over by DNA methylation in Ascobolus. Gen Dev. 1998;12(9):1381–9.

    Article  CAS  Google Scholar 

  68. Mezard C, Vignard J, Drouaud J, Mercier R. The road to crossovers: plants have their say. Tr Genet. 2007;23(2):91–9. https://doi.org/10.1016/j.tig.2006.12.007.

    Article  CAS  Google Scholar 

  69. Motamayor JC, Vezon D, Bajon C, Sauvanet A, Grandjean O, Marchand M, Bechtold N, Pelletier G, Horlow C. Switch (swi1), an Arabidopsis thaliana mutant affected in the female meiotic switch. Sex Plant Reprod. 2000;12(4):209–18. https://doi.org/10.1007/s004970050002.

    Article  Google Scholar 

  70. Nelson OE Jr, Clary GB. Genic control of semi-sterility in maize: an inbred with pollen semi-sterility and ovule semi-sterility caused by different genes. J Hered. 1952;43(5):205–10. https://doi.org/10.1093/oxfordjournals.jhered.a106307.

    Article  Google Scholar 

  71. Noda S. Achiasmate meiosis in the Fritillaria japonica group. Heredity. 1975;34(3):373–80. https://doi.org/10.1038/hdy.1975.46.

    Article  Google Scholar 

  72. Page SL, Hawley RS. The genetics and molecular biology of the synaptonemal complex. Ann Rev Cell Dev Bio. 2004;20:525–58. https://doi.org/10.1146/annurev.cellbio.19.111301.155141.

    Article  CAS  Google Scholar 

  73. Petkov PM, Broman KW, Szatkiewicz JP, Paigen K. Crossover interference underlies sex differences in recombination rates. Tr Genet. 2007;23(11):539–42. https://doi.org/10.1016/j.tig.2007.08.015.

    Article  CAS  Google Scholar 

  74. Prakken R. Studies of asynapsis in rye. Hereditas. 1943;29(3–4):475–95. https://doi.org/10.1111/j.1601-5223.1943.tb03301.x.

    Article  Google Scholar 

  75. Ravi M, Marimuthu M, Siddiqi I. Gamete formation without meiosis in Arabidopsis. Nature. 2008;451(7182):1121–4. https://doi.org/10.1038/nature06557.

    Article  CAS  PubMed  Google Scholar 

  76. Rees H. Genotypic control of chromosome form and behaviour. Bot Rev. 1961;27(2):288–318. https://doi.org/10.1007/BF02860084.

    Article  Google Scholar 

  77. Riley R, Law CN. Genetic variation in chromosome pairing. Adv Genet. 1965;13:57–114. https://doi.org/10.1016/S0065-2660(08)60047-4.

    Article  Google Scholar 

  78. Robinson-Beers K, Pruitt RE, Gasser CS. Ovule development in wild-type Arabidopsis and two female-sterile mutants. Plant Cell. 1992;4(10):1237–49. https://doi.org/10.1105/tpc.4.10.1237.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rodriguez-Riano T, Valtueña FJ, Ortega-Olivencia A. Megasporogenesis, megagametogenesis and ontogeny of the aril in Cytisus striatus and C. multiflorus (Leguminosae: Papilionoideae). Ann Bot. 2006;98(4):777–91.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Roeder GS. Meiotic chromosomes: it takes two to tango. Genes Dev. 1997;11(20):2600–21. https://doi.org/10.1101/gad.11.20.2600.

    Article  CAS  PubMed  Google Scholar 

  81. Rönspies M, Schindele P, Puchta H. CRISPR/cas-mediated chromosome engineering: opening up a new avenue for plant breeding. J Exp Bot. 2021;72(2):177–83. https://doi.org/10.1093/jxb/eraa463.

    Article  CAS  PubMed  Google Scholar 

  82. Ross KJ, Fransz P, Armstrong SJ, Vizir I, Mulligan B, Franklin FCH, Jones GH. Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNA-transformed lines. Chromosome Res. 1997;5(8):551–9. https://doi.org/10.1023/A:1018497804129.

    Article  CAS  PubMed  Google Scholar 

  83. Roy RP, Saran S, Dutt B. Cytogenetics of the Cucurbitaceae. In: Chromosome engineering in plants: genetics, breeding, evolution. Part B (Tsuchiya T, Gupta PK, editors). Netherlands: Elsevier; 1991. pp 181-200.

  84. Sall T, Flink J, Bengtsson BO. Genetic control of recombination in barley: variation in recombination frequency measured with inversion heterozygotes. Hereditas. 1990;112(2):157–70. https://doi.org/10.1111/j.1601-5223.1990.tb00053.x.

    Article  Google Scholar 

  85. Sarkar S, Banerjee J, Gantait S. Sex-oriented research on dioecious crops of Indian subcontinent: an updated review. 3 Biotech. 2017; 7: 93

  86. Schindele A, Dorn A, Puchta H. CRISPR/cas brings plant biology and breeding into the fast lane. Curr Opin Biotechnol. 2020;61:7–14.

    Article  CAS  PubMed  Google Scholar 

  87. Schneitz K, Hülskamp M, Pruitt RE. Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. Plant J. 1995;7(5):731–49. https://doi.org/10.1046/j.1365-313X.1995.07050731.x.

    Article  Google Scholar 

  88. Shao F, Wang S, Chen J, Hong R. Megasporogenesis, microsporogenesis, and development of female and male gametophytes of Ziziphus jujuba Mill. ‘Zhongqiusucui.’ HortScience. 2019;54(10):1686–93.

    Article  CAS  Google Scholar 

  89. Sharma G, Gohil RN. Occurrence of differential meiotic associations and additional chromosomes in the embryo-sac mother cells of Allium roylei Stearn. J Genet. 2011;90(1):45–9. https://doi.org/10.1007/s12041-011-0031-8.

    Article  PubMed  Google Scholar 

  90. Sharma P, Sharma N. Aneusomaty and chromosomal chimeras in male track of Coccinia grandis (L.) Voigt. Natl Acad Sci Lett. 2022;1:1–4.

    Google Scholar 

  91. Sharma R, Geeta R, Bhat V. Asynchronous male/female gametophyte development in facultative apomictic plants of Cenchrus ciliaris (Poaceae). S Afr J Bot. 2014;91:19–31. https://doi.org/10.1016/j.sajb.2013.10.012.

    Article  CAS  Google Scholar 

  92. Sharma A, Sharma A. Chromosome techniques: theory and practice. 2014. Butterworth-Heinemann

  93. Singh RJ. Plant cytogenetics. 2016. CRC press

  94. Southgate EM, Davey MR, Power JB, Marchant R. Factors affecting the genetic engineering of plants by microprojectile bombardment. Biotechnol Adv. 1995;13(4):631–51. https://doi.org/10.1016/0734-9750(95)02008-X.

    Article  CAS  PubMed  Google Scholar 

  95. Stelly DM, Peloquin SJ, Palmer RG, Crane CF. Mayer’s hemalum-methyl salicylate: a stain-clearing technique for observations within whole ovules. Stain Technol. 1984;59(3):155–61. https://doi.org/10.3109/10520298409113849.

    Article  CAS  PubMed  Google Scholar 

  96. Taagen E, Bogdanove AJ, Sorrells ME. Achieving controlled recombination with targeted cleavage and epigenetic modifiers. Trends Plant Sci. 2020;25(5):513–4.

    Article  CAS  PubMed  Google Scholar 

  97. Taagen E, Bogdanove AJ, Sorrells ME. Counting on crossovers: controlled recombination for plant breeding. Trends Plant Sci. 2020;25(5):455–65. https://doi.org/10.1016/j.tplants.2019.12.017.

    Article  CAS  PubMed  Google Scholar 

  98. Tofanelli R, Vijayan A, Scholz S, Schneitz K. Protocol for rapid clearing and staining of fixed Arabidopsis ovules for improved imaging by confocal laser scanning microscopy. Plant Methods. 2019;15(1):1–13. https://doi.org/10.1186/s13007-019-0505-x.

    Article  CAS  Google Scholar 

  99. Ved Brat S. Genetic systems in Allium. Chromosomes today: II. Sex differences in meiosis; 1966. p. 31–40.

    Google Scholar 

  100. Villeneuve AM, Hillers KJ. Whence meiosis? Cell. 2001;106(6):647–50. https://doi.org/10.1016/S0092-8674(01)00500-1.

    Article  CAS  PubMed  Google Scholar 

  101. Vizir IY, Korol AB. Sex difference in recombination frequency in Arabidopsis. Heredity. 1990;65(3):379–83. https://doi.org/10.1038/hdy.1990.107.

    Article  Google Scholar 

  102. Vosa CG. Two track heredity: differentiation of male and female meiosis in Tulbaghia. Caryologia. 1972;25(3):275–81. https://doi.org/10.1080/00087114.1972.10796482.

    Article  Google Scholar 

  103. Vosa CG, Barlow PW. Meiosis and B-chromosomes in Listera ovata (Orchidaceae). Caryologia. 1972;25(1):1–8. https://doi.org/10.1080/00087114.1972.10796459.

    Article  Google Scholar 

  104. Webb MC, Gunning BE. Embryo sac development in Arabidopsis thaliana. Sex Plant Reprod. 1990;3(4):244–56. https://doi.org/10.1007/BF00202882.

    Article  Google Scholar 

  105. Webb MC, Gunning BE. Embryo sac development in Arabidopsis thaliana II The cytoskeleton during megagametogenesis. Sex Plant Reprod. 1994;7(3):153–63. https://doi.org/10.1007/BF00228488.

    Article  Google Scholar 

  106. Wijnker E, de Jong H. Managing meiotic recombination in plant breeding. Trends Plant Sci. 2008;13(12):640–6. https://doi.org/10.1016/j.tplants.2008.09.004.

    Article  CAS  PubMed  Google Scholar 

  107. Wolter F, Schindele P, Puchta H. Plant breeding at the speed of light: the power of CRISPR/cas to generate directed genetic diversity at multiple sites. BMC Plant Biol. 2019;19(1):1–8. https://doi.org/10.1186/s12870-019-1775-1.

    Article  Google Scholar 

  108. Zhang X, Yazaki J, Sundaresan A, Shawn C, Simon W, Chan L, Chan H, Henderson IR, Paul S, Matteo P, Steve EJ, Joseph ER. Genome wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell. 2006;126:1189–201.

    Article  CAS  PubMed  Google Scholar 

  109. Zickler D, Kleckner N. The leptotene-zygotene transition of meiosis. Annu Rev Genet. 1998;32:619.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

KKK acknowledges with thanks the help provided by Mr. Sanjeev Dutt Sharma, the Librarian, Hindu College, Delhi while collecting the literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep Kumar Koul.

Ethics declarations

Conflict of interest

This work was conceived and written by KKK and RN and there is no CONFLICT OF INTEREST involved. Further, this work did not receive any funding from any source.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor: Manoj Kumar Dhar; Reviewers: Manoj M. Lekhak, Susheel Verma.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar Koul, K., Nagpal, R. Female meiosis in plants, and differential recombination in the two sexes: a perspective. Nucleus 66, 195–203 (2023). https://doi.org/10.1007/s13237-023-00417-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-023-00417-7

Keywords

Navigation