Skip to main content
Log in

High-stability flexible body motion monitoring sensor based on waterborne polyurethane-coated conductive warp-knitted fabric

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

To prepare a high-stability flexible sensor for body motion monitoring, a conductive warp-knitted fabric (CWKF) with a two-bar tricot structure coated with polyaniline(PANI) was prepared by in situ polymerization, and then a waterborne polyurethane-coated conductive warp-knitted fabric (WPU/CWKF) was prepared using a simple dip-and-dry method. The structure and properties of both CWKF and WPU/CWKF were analyzed, their strain-resistance sensing properties were investigated, and their application in body motion monitoring was discussed. The results indicate that conductive treatment of in situ polymerization can give the polyester warp-knitted fabric good electrical conductivity, with a resistivity of approximately 5 Ω cm. After coating with WPU, the resistivity of the WPU/CKWF increased to approximately 40 Ω cm. Both CKWF and WPU/CKWF showed good strain-resistance sensing performance, but CWKF was more sensitive than WPU/CKWF, whereas WPU/CKWF was more stable than CWKF. Both the CWKF and WPU/CKWF sensors could monitor body motion in real time. Similar to their base materials, the CWKF sensor demonstrated a higher sensitivity for human movement monitoring, whereas the WPU/CKWF sensor exhibited higher stability.

Graphic abstract

Conductive warp-knitted fabric (CWKF) with a two-bar tricot warp-knitted structure coated with polyaniline (PANI) was prepared by in situ polymerisation. After repeated reciprocal stretching, the structure of the PANI conductive layer on the CWKF surface broke down and its conductivity changed, especially under large strains. CWKF sensors enable real-time human motion monitoring with high sensitivity

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. J. Lee, H. Kwon, J. Seo, S. Shin, J.H. Koo, C. Pang, S. Son, J.H. Kim, Y.H. Jang, D.E. Kim, T. Lee, Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv. Mater. 27, 2433–2439 (2015). https://doi.org/10.1002/adma.201500009

    Article  CAS  PubMed  Google Scholar 

  2. M. Chen, Y. Ma, Y. Li, D. Wu, Y. Zhang, C.H. Youn, Wearable 2.0: enabling human-cloud integration in next generation healthcare systems. IEEE Commun. Mag. 55, 54–61 (2017). https://doi.org/10.1109/MCOM.2017.1600410CM

    Article  Google Scholar 

  3. S. Ajami, F. Teimouri, Features and application of wearable biosensors in medical care. Res. Med. Sci 20, 1208–1215 (2015). https://doi.org/10.4103/1735-1995.172991

    Article  CAS  Google Scholar 

  4. M. Chen, Y. Ma, J. Song, C.F. Lai, B. Hu, Smart clothing: connecting human with clouds and big data for sustainable health monitoring. Mob. Netw. Appl. 21, 825–845 (2016). https://doi.org/10.1007/s11036-016-0745-1

    Article  Google Scholar 

  5. D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin, L. Piao, B. Park, K.Y. Suh, T. Il Kim, M. Choi, Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222–226 (2014). https://doi.org/10.1038/nature14002

    Article  CAS  PubMed  Google Scholar 

  6. S. Choi, H. Lee, R. Ghaffari, T. Hyeon, D.H. Kim, Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 28, 4203–4218 (2016). https://doi.org/10.1002/adma.201504150

    Article  CAS  PubMed  Google Scholar 

  7. Y. Khan, A.E. Ostfeld, C.M. Lochner, A. Pierre, A.C. Arias, Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28, 4373–4395 (2016). https://doi.org/10.1002/adma.201504366

    Article  CAS  PubMed  Google Scholar 

  8. X. Zhou, C. Hu, X. Lin, X. Han, X. Zhao, J. Hong, Polyaniline-coated cotton knitted fabric for body motion monitoring, Sensors Actuators. A Phys. 321, 112591 (2021). https://doi.org/10.1016/j.sna.2021.112591

    Article  CAS  Google Scholar 

  9. Z. Lei, Q. Wang, S. Sun, W. Zhu, P. Wu, A Bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. (2017). https://doi.org/10.1002/adma.201700321

    Article  PubMed  Google Scholar 

  10. J. Hong, Z. Pan, M. Zhewang, J. Yao, Y.Z. Chen, A large-strain weft-knitted sensor fabricated by conductive UHMWPE/PANI composite yarns. Sens. Actuat. A-phys. 238, 307–316 (2016). https://doi.org/10.1016/j.sna.2015.12.028

    Article  CAS  Google Scholar 

  11. D. Lu, S. Liao, Q. Wei, X. Xiao, Q. Wang, Comparative study of different carbon materials for the preparation of knitted fabric sensors. Cellulose 29, 7431–7444 (2022). https://doi.org/10.1007/s10570-022-04722-3

    Article  CAS  Google Scholar 

  12. Q. Yu, J. Jiang, C. Su, Y. Huang, N. Chen, H. Shao, Ti3C2Tx MXene/polyvinyl alcohol decorated polyester warp knitting fabric for flexible wearable strain sensors. Text. Res. J. 92, 810–824 (2022). https://doi.org/10.1177/00405175211044163

    Article  CAS  Google Scholar 

  13. A. Grassi, F. Cecchi, M. Maselli, M. Roling, C. Laschi, M. Cianchetti, Warp-knitted textile as a strain sensor: characterization procedure and application in a comfortable wearable goniometer. IEEE Sens. J. 17, 5927–5936 (2017). https://doi.org/10.1109/JSEN.2017.2736944

    Article  CAS  Google Scholar 

  14. R. Xu, W. Wang, J. Sun, Y. Wang, C. Wang, X. Ding, Z. Ma, Y. Mao, D. Yu, A flexible, conductive and simple pressure sensor prepared by electroless silver plated polyester fabric. Colloids Surf A Physicochem Eng Asp 578, 123554 (2019). https://doi.org/10.1016/j.colsurfa.2019.04.096

    Article  CAS  Google Scholar 

  15. A. Gurarslan, B. Özdemir, İH. Bayat, M.B. Yelten, G. Karabulut Kurt, Silver nanowire coated knitted wool fabrics for wearable electronic applications. J. Eng. Fiber Fabr. (2019). https://doi.org/10.1177/1558925019856222

    Article  Google Scholar 

  16. S. Khadtare, E.J. Ko, Y.H. Kim, H.S. Lee, D.K. Moon, A flexible piezoelectric nanogenerator using conducting polymer and silver nanowire hybrid electrodes for its application in real-time muscular monitoring system. Sens. Actuators A Phys. 299, 111575 (2019). https://doi.org/10.1016/j.sna.2019.111575

    Article  CAS  Google Scholar 

  17. C. Gao, S. He, L. Qiu, M. Wang, J. Gao, Q. Gao, Continuous dry–wet spinning of white, stretchable, and conductive fibers of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) and ATO@ TiO2 nanoparticles for wearable e-textiles. J. Mater. Chem. C Mater. 8, 8362–8367 (2020). https://doi.org/10.1039/d0tc01310b

    Article  CAS  Google Scholar 

  18. F.S. da Luz, F. da Costa Garcia, M.-R. Filho, L.F. Cassiano Nascimento, W.A. Pinheiro, S.N. Monteiro, Graphene-incorporated natural fiber polymer composites: a first overview. Polymers (Basel) 12, 1601 (2020). https://doi.org/10.3390/polym12071601

    Article  CAS  PubMed  Google Scholar 

  19. G. Achagri, Y. Essamlali, O. Amadine, M. Majdoub, A. Chakir, M. Zahouily, Surface modification of highly hydrophobic polyester fabric coated with octadecylamine-functionalized graphene nanosheets. RSC Adv. 10, 24941–24950 (2020). https://doi.org/10.1039/d0ra02655g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. L. Sun, F. Wang, J. Jiang, H. Liu, B. Du, M. Li, Y. Liu, M. Li, A wearable fabric strain sensor assemblied by graphene with dual sensing performance approach to practice application assisted by wireless bluetooth. Cellulose 27, 8923–8935 (2020). https://doi.org/10.1007/s10570-020-03401-5

    Article  CAS  Google Scholar 

  21. J. Zhou, Z. Zhao, R. Hu, J. Yang, H. Xiao, Y. Liu, M. Lu, Multi-walled carbon nanotubes functionalized silk fabrics for mechanical sensors and heating materials. Mater. Des. 191, 108636 (2020). https://doi.org/10.1016/j.matdes.2020.108636

    Article  CAS  Google Scholar 

  22. C.R.S. de Oliveira, M.A. Batistella, S.M.A.G.U. de Souza, A.A.U. de Souza, Development of flexible sensors using knit fabrics with conductive polyaniline coating and graphite electrodes. J. Appl. Polym. Sci. 18, 134 (2017). https://doi.org/10.1002/app.44785

    Article  CAS  Google Scholar 

  23. R. Hu, J. Zheng, Preparation of high strain porous polyvinyl alcohol/polyaniline composite and its applications in all-solid-state supercapacitor. J. Power. Sources 364, 200–207 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.022

    Article  CAS  Google Scholar 

  24. X.H. Wang, Q. Tang, Y.H. Mu, C.Q. Li, Preparation of PANI–PVA composite conductive coatings doped with different acid. J. Adv. Polym. Technol. 36, 502–506 (2017). https://doi.org/10.1002/adv.21633

    Article  CAS  Google Scholar 

  25. C.Y. Hu, R.W. Miao, X. Han, J.H. Hong, G.I.L. Ignacio, Effect of polyvinyl alcohol on the durability of polyaniline layer on poly(p-phenylene terephthamide) yarn surface. J. Text. Res. 41, 91–97 (2020)

    Google Scholar 

  26. R.W. Miao, X.R. Zhou, X.T. Wang, X. Han, J.H. Hong, Preparation and properties of highly durable J silk fibroin/polyaniline composite yarn. J. Silk. 58, 1–5 (2021). https://doi.org/10.3969/jissn.1001-7003.2021.04.001

    Article  Google Scholar 

  27. B.C. Zhao, J.Q. Yan, F. Long, Q. Wu, G.Q. Meng, Z.C. Zeng, H. Wang, N.B. Lin, X.Y. Liu, Bioinspired conductive enhanced polyurethane ionic skin as reliable multifunctional sensors. J. Adv. Sci. (2023). https://doi.org/10.1002/advs.202300857

    Article  Google Scholar 

  28. L. Wu, C. Xu, M.L. Fan, P. Tang, R. Zhang, S.T. Yang, L.J. Pan, Y.Z. Bin, Lotus root structure-inspired Ti3C2-MXene-based flexible and wearable strain sensor with ultra-high sensitivity and wide sensing range[J]. Compos. Part A Appl. Sci. Manuf. 152, 106702 (2022). https://doi.org/10.1016/j.compositesa.2021.106702

    Article  CAS  Google Scholar 

  29. R. Holm, Electric contacts theory and application. Journal of Handbook (1967), pp. 60–71

Download references

Acknowledgements

The authors acknowledge the financial support from the Exploratory Public Welfare Project of the Zhejiang Provincial Natural Science Foundation of China (Grant No. LTGY24E030001) and Key Industrial Technology Research Projects of Keqiao District (Grant No. 2023JBGS110).

Funding

This research was financially supported by the Exploratory Public Welfare Project of the Zhejiang Provincial Natural Science Foundation of China (Grant No. LTGY24E030001), and Key Industrial Technology Research Projects of Keqiao District (Grant No. 2023JBGS110), Jianhan Hong.

Author information

Authors and Affiliations

Authors

Contributions

XY contributed to formal analysis, writing––original draft, and writing––review and editing. XW did formal analysis and provided software. XH and JH contributed to conceptualization, methodology, formal analysis, and writing––review and editing.

Corresponding author

Correspondence to Xiao Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, X., Wang, X., Han, X. et al. High-stability flexible body motion monitoring sensor based on waterborne polyurethane-coated conductive warp-knitted fabric. Macromol. Res. (2024). https://doi.org/10.1007/s13233-024-00258-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13233-024-00258-6

Keywords

Navigation