Skip to main content
Log in

Molecular dynamics study and preparation of aligned fibrin hydrogel grafted with RADA16-based functional peptide

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Bioactive scaffold design is always a key factor for neural tissue engineering, and decides the results of neural tissue regeneration. Fibrin hydrogel and RADA16-based functional peptides, as two kinds of soft hydrogel biomaterials, were successfully designed and used for neural tissue engineering. In this work, the interaction of fibrin and RADA16-based functional peptide was examined through a molecular dynamics study, and the results could be used to identify whether the combination of the two kinds of hydrogel is realizable and effective. In this study, RADA16-conjugated neurotrophic peptide (RAD-RGI) was developed by grafting neurotrophic peptide RGI (RGIDKRHWNSQ) to the C-terminus of amphiphilic peptide RADA16-I (Ac-(RADA)4-CONH2). The molecular dynamics simulations results indicated that RAD-RGI bound to fibrin autonomously and distributed randomly mostly under the action of intermolecular static electricity, van der Waals force, and hydrophobicity as well. In addition, the positive charged and non-polar residues play crucial roles in peptide-fibrin interactions. From the structural analysis result of the peptide with the highest content of α-helix structure in the composite system, RAD-RGI was bound to fibrin with amino acids in the region of RADA, while RGI motifs maintained its original structure and function in the binding process that provided the fibrin composite hydrogel with neurotrophic bioactivity. Finally, the RAD-RGI/aligned fibrin hydrogel (RAD-RGI/AFG) was successfully fabricated, and the composite hydrogel’s microstructure was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). This research provides theoretical support for the combination of fibrin hydrogel with RADA16-conjugated neurotrophic peptides in the design of neural tissue engineering biomaterials.

Graphical abstract

The Illustration of the RAD-RGI/AFG hydrogel formation and the 3D interaction map of RAD-RGI peptide with the lowestfree energy and AFG for the RAD-RGI/AFG complex system

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Assinck, G.J. Duncan, B.J. Hilton, J.R. Plemel, W. Tetzlaff, Nat. Neurosci. 20, 637 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. P. Zhang, N. Han, Y. Kou, Q. Zhu, X. Liu, D. Quan, J. Chen, B. Jiang, Neural Regen. Res. 14, 51 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Z. Li, Q. Wang, H. Hu, W. Zheng, C. Gao, Biomed. Mater. 16, 052002 (2021)

    Article  CAS  Google Scholar 

  4. K. Fu, H. Wu, Z. Su, Biotechnol. Adv. 49, 107752 (2021)

    Article  CAS  PubMed  Google Scholar 

  5. G. Li, S. Li, L. Zhang, S. Chen, Z. Sun, S. Li, L. Zhang, Y. Yang, A.C.S. Appl, Mater. Interfaces 11, 37397 (2019)

    Article  CAS  Google Scholar 

  6. X. Ding, H. Zhao, Y. Li, A.L. Lee, Z. Li, M. Fu, C. Li, Y. Yang, P. Yuan, Adv. Drug Deliv. Rev. 160, 78 (2020)

    Article  CAS  PubMed  Google Scholar 

  7. D. Wu, S. Zhang, Y. Zhao, N. Ao, S. Ramakrishna, L. He, Biomed. Mater. 13, 035011 (2018)

    Article  PubMed  Google Scholar 

  8. Y. Sun, W. Li, X. Wu, N. Zhang, Y. Zhang, S. Ouyang, X. Song, X. Fang, R. Seeram, W. Xue, L. He, W. Wu, A.C.S. Appl, Mater. Interfaces 8, 2348 (2016)

    Article  CAS  Google Scholar 

  9. S. Yao, X. Liu, S. Yu, X. Wang, S. Zhang, Q. Wu, X. Sun, H. Mao, Nanoscale 8, 10252 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. Z. Cao, S. Yao, Y. Xiong, Z. Zhang, Y. Yang, F. He, H. Zhao, Y. Guo, G. Wang, S. Xie, H. Guo, X. Wang, J Mater. Sci. Mater. Med. 31, 40 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. J. Lu, X. Sun, H. Yin, X. Shen, S. Yang, Y. Wang, W. Jiang, Y. Sun, L. Zhao, X. Sun, S. Lu, A.G. Mikos, J. Peng, X. Wang, Nano Res. 11, 4599 (2018)

    Article  CAS  Google Scholar 

  12. M. Fornaro, A. Giovannelli, A. Foggetti, L. Muratori, S. Geuna, G. Novajra, I. Perroteau, Neural Regen. Res. 15, 1732 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. R. Yin, S. Zhao, C. Qiu, J. Pharm. Pharmacol. 72, 539 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. H. Asadzadeh, A. Moosavi, J.H. Arghavani, Carbohydr. Polym. 237, 116124 (2020)

    Article  CAS  PubMed  Google Scholar 

  15. M. Ghoula, N. Janel, A.C. Camproux, G. Moroy, Int. J. Mol. Sci. 23, 1746 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S.J. Everse, G. Spraggon, L. Veerapandian, M. Riley, R.F. Doolittle, Biochemistry 37, 8637 (1998)

    Article  CAS  PubMed  Google Scholar 

  17. Y. Shen, J. Maupetit, P. Derreumaux, P. Tufféry, J. Chem. Theory Comput. 10, 4745 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl, SoftwareX 1–2, 19 (2015)

    Article  Google Scholar 

  19. W. Jorgensen, J. Chandrasekhar, J. Madura, R. Impey, M. Klein, J. Chem. Phys. 79, 926 (1983)

    Article  CAS  Google Scholar 

  20. B. Hess, J. Chem. Theory Comput 4, 116 (2008)

    Article  CAS  PubMed  Google Scholar 

  21. H.J.C. Berendsen, J.P.M. Postma, W.F. Van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984)

    Article  CAS  Google Scholar 

  22. W. Kabsch, C. Sander, Biopolymers 22, 2577 (1983)

    Article  CAS  PubMed  Google Scholar 

  23. R.E. Rigsby, A.B. Parker, Biochem. Mol. Biol. Educ. 44, 433 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. C.C. David, D.J. Jacobs, Methods Mol. Biol. 1084, 193 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. P.A. Taylor, A. Jayaraman, Annu. Rev. Chem. Biomol. Eng. 11, 257 (2020)

    Article  CAS  PubMed  Google Scholar 

  26. G.L. Butterfoss, J. Hermans, Protein Sci. 12, 2719 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. R. Kumari, R. Kumar, A. Lynn, J. Chem. Inf. Model. 54, 1951 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. N. Foloppe, R. Hubbard, Curr. Med. Chem. 13, 3583 (2006)

    Article  CAS  PubMed  Google Scholar 

  29. P. Grochowski, J. Trylska, Biopolymers 89, 93 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. R.M. Levy, L.Y. Zhang, E. Gallicchio, A.K. Felts, J. Am. Chem. Soc. 125, 9523 (2003)

    Article  CAS  PubMed  Google Scholar 

  31. J.Y. Hong, S.H. Kim, Y. Seo, J. Jeon, G. Davaa, J.K. Hyun, S.H. Kim, J. Tissue Eng. 13, 20417314221086492 (2022)

    PubMed  PubMed Central  Google Scholar 

  32. A.M. Putri, T. Sumaryada, T.W. Setyanto, J. Phys. Conf. Ser. 877, 012007 (2017)

    Article  Google Scholar 

  33. Y. Yang, J. Gao, J. Wang, R. Heffernan, J. Hanson, K. Paliwal, Y. Zhou, Brief Bioinform. 19, 482 (2018)

    CAS  PubMed  Google Scholar 

  34. Y. Yang, U. Khoe, X. Wang, H. Akihiro, Y. Hidenori, S. Zhang, Nano Today 4, 193 (2009)

    Article  CAS  Google Scholar 

  35. S. Yao, S. Yu, Z. Cao, Y. Yang, X. Yu, H. Mao, L.-N. Wang, X. Sun, L. Zhao, X. Wang, Int. J. Nanomed. 13, 2883 (2018)

    Article  CAS  Google Scholar 

  36. W. Man, S. Yang, Z. Cao, J. Lu, X. Kong, X. Sun, L. Zhao, Y. Guo, S. Yao, G. Wang, X. Wang, Biomaterials 276, 120971 (2021)

    Article  CAS  PubMed  Google Scholar 

  37. S. Yang, J. Zhu, C. Lu, Y. Chai, Z. Cao, J. Lu, Z. Zhang, H. Zhao, Y.-Y. Huang, S. Yao, X. Kong, P. Zhang, X. Wang, Bioact. Mater. 8, 529 (2022)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (no. 31800813) and Beijing Natural Science Foundation (no. 2184113)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiumei Wang or Luning Wang.

Ethics declarations

Conflict of interest

All the authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, S., Fa, X., Chen, R. et al. Molecular dynamics study and preparation of aligned fibrin hydrogel grafted with RADA16-based functional peptide. Macromol. Res. 31, 649–662 (2023). https://doi.org/10.1007/s13233-023-00159-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-023-00159-0

Keywords

Navigation