Skip to main content
Log in

Sources of β-galactosidase and its applications in food industry

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The enzyme β-galactosidases have been isolated from various sources such as bacteria, fungi, yeast, vegetables, and recombinant sources. This enzyme holds importance due to its wide applications in food industries to manufacture lactose-hydrolyzed products for lactose-intolerant people and the formation of glycosylated products. Absorption of undigested lactose in small intestine requires the activity of this enzyme; hence, the deficiency of this enzyme leads to lactose intolerance. Lactose intolerance affects around 70% of world’s adult population, while the prevalence rate of lactose intolerance is 60% in Pakistan. β-Galactosidases are not only used to manufacture lactose-free products but also employed to treat whey, and used in prebiotics. This review focuses on various sources of β-galactosidase and highlights the importance of β-galactosidases in food industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aronson M (1952) Transgalactosidation during lactose hydrolysis. Arch Biochem Biophys 39:370–378

    Article  CAS  Google Scholar 

  • Barile D, Tao N, Lebrilla CB, Coisson JD, Arlorio M, German JB (2009) Permeate from cheese whey ultrafiltration is a source of milk oligosaccharides. Int Dairy J 19:524–530

    Article  CAS  Google Scholar 

  • Batsalova K, Kunchev K, Popova Y, Kozhukharova A, Kirova N (1987) Hydrolysis of lactose by β-galactosidase immobilized in polyvinylalcohol. Appl Microbiol Biotechnol 26:227–230

    Article  CAS  Google Scholar 

  • Boon MA, Janssen A (2000) Effect of temperature and enzyme origin on the enzymatic synthesis of oligosaccharides. Enzyme Microb Technol 26:271–281

    Article  CAS  Google Scholar 

  • Borglum G, Sternberg MZ (1972) Properties of a fungal lactase. J Food Sci 37:619–623

    Article  CAS  Google Scholar 

  • Brandão RL, Nicoli JR, Figueiredo AF (1987) Purification and characterization of a beta-galactosidase from Fusarium oxysporum. J Dairy Sci 70:1331–1337

    Article  Google Scholar 

  • Carrara CR, Rubiolo AC (1994) Immobilization of β-galactosidase on chitosan. Biotechnol Prog 10:220–224

    Article  CAS  Google Scholar 

  • Champluvier B, Kamp HE, Rouxhet PG (1988) Immobilization of β-galactosidase retained in yeast: adhesion of the cells on a support. Appl Microbiol Biotechnol 27:464–469

    Article  CAS  Google Scholar 

  • Corral JM, Banuelos O, Adrio JL, Velasco J (2005) Cloning and characterization of a beta-galactosidase encoding region in Lactobacillus coryniformis. Appl Microbiol Biotechnol 73:640–646

    Article  Google Scholar 

  • Domingues L, Lima N, Teixeira JA (2005) Aspergillus niger β-galactosidase production by yeast in a continuous high cell density reactor. Process Biochem 40:1151–1154

    Article  CAS  Google Scholar 

  • El-Gindy A (2003) Production, partial purification and some properties of β-galactosidase from Aspergillus carbonarius. Folia Microbiol 48:581–584

    Article  CAS  Google Scholar 

  • Felicilda-Reynaldo RF, Kenneally M (2016) Digestive enzyme replacement therapy: pancreatic enzymes and lactase. Medsurg Nurs 25:182–185

    Google Scholar 

  • Francesconi CF, Machado MB, Steinwurz F, Nones RB, Quilici FA, Catapani WR, Miszputen SJ, Bafutto M (2016) Oral administration of exogenous lactase in tablets for patients diagnosed with lactose intolerance due to primary hypoplactasia. Arq Gastroenterol 53:228–234

    Article  Google Scholar 

  • Grosová Z, Rosenberg M, Gdovin M, Sláviková L, Rebroš M (2009) Production of d-galactose using β-galactosidase and Saccharomyces cerevisiae entrapped in poly (vinylalcohol) hydrogel. Food Chem 116:96–100

    Article  Google Scholar 

  • Haider T, Husain Q (2007a) Preparation of lactose free milk by using ammonium sulphate fractionated proteins from almonds. J Sci Food Agric 87:1278–1283

    Article  CAS  Google Scholar 

  • Haider T, Husain Q (2007b) Calcium alginate entrapped preparations of Aspergillus oryzae beta galactosidase: its stability and applications in the hydrolysis of lactose. Int J Biol Macromol 41:72–80

    Article  CAS  Google Scholar 

  • Hsu CA, Lee SL, Chou C (2007) Enzymatic production of galactooligosaccharides by β-galactosidase from Lactobacillus pentosus purification characterization and formation of galacto-oligosaccharides from Bifidobacterium longum BCRC 15708. J Agric Food Chem 55:2225–2230

    Article  CAS  Google Scholar 

  • Huber RE, Kurz G, Wallenfels K (1976) A quantitation of the factors which affect the hydrolase and trangalactosylase activities of β-galactosidase (E. coli) on lactose. Biochemistry 15:1994–2001

    Article  CAS  Google Scholar 

  • Ianiro G, Pecere S, Giorgio V, Gasbarrini A, Cammarota G (2017) Digestive enzyme supplementation in gastrointestinal diseases. Curr Drug Metab 17:187–193

    Article  Google Scholar 

  • Iqbal S, Nguyen TH, Nguyen TT, Maischberger T, Haltrich D (2010) β-Galactosidase from Lactobacillus plantarum WCFS1: biochemical characterization and formation of prebiotic galacto-oligosaccharides. Carbohydr Res 345:1408–1416

    Article  CAS  Google Scholar 

  • Jung SJ, Lee BH (2008) Production and application of galacto-oligosaccharides from lactose by a recombinant β-galactosidase of Bifidobacterium infantis overproduced by Pichia pastoris. Food Sci Biotechnol 17:514–518

    CAS  Google Scholar 

  • Karasova P, Spiwok V, Mala S, Kralova B, Russell NJ (2002) Beta-galactosidase activity in psychrophic microorganisms and their potential use in food industry. Czech J Food Sci 20:43–47

    CAS  Google Scholar 

  • Kazemi S, Khayati G, Faezi-Ghasemi M (2016) β-Galactosidase production by Aspergillus niger ATCC 9142 using inexpensive substrates in solid-state fermentation: optimization by orthogonal arrays design. Iran Biomed J 20:287–294

    Google Scholar 

  • Kokkiligadda A, Beniwal A, Saini P, Vij S (2016) Utilization of cheese whey using synergistic immobilization of β-galactosidase and Saccharomyces cerevisiae cells in dual matrices. Appl Biochem Biotechnol 179:1469–1484

    Article  CAS  Google Scholar 

  • Li Z, Xia M, Lu Y (2008) Production of non-monosaccharide and high-purity galactooligosaccharides by immobilized enzyme catalysis and fermentation with immobilized yeast cells. Process Biochem 43:896–899

    Article  CAS  Google Scholar 

  • Lukito W, Malik SG, Surono IS, Wahlqvist ML (2015) From ‘lactose intolerance’ to ‘lactose nutrition’. Asian Pac J Clin Nutr 24:S1–S8

    CAS  Google Scholar 

  • Mahdian SMA, Karimi E, Tanipour MH, Parizadeh SMR, Glayour-Mobarhan M, Bazaz MM, Mashkani B (2016) Expression of a functional cold active β-galactosidase from Planococcus sp-L4 in Pichia pastoris. Protein Expr Purif 125:19–25

    Article  CAS  Google Scholar 

  • Mahoney RR (2003) Enzymes exogenous to milk in dairy, β-d-galactosidase. Encycl Dairy Sci 2:907–914

    Google Scholar 

  • Matioli G, Mores FFD, Zanin GM (2003) Operated stability and kinetics of lactose hydrolysis by β galactosidase from Kluyveromyces fragilis. Acta Scientiarum Health Sci 25:7–12

    Article  CAS  Google Scholar 

  • Matto M, Husain Q (2006) Entrapment of porous and stable concanavalin A-peroxidase complex into hybrid calcium alginate-pectin gel. J Clin Technol Biotechnol 81:1316–1323

    Article  CAS  Google Scholar 

  • Nagy Z, Kiss T, Szentirmai A, Biró S (2001) Beta-galactosidase of Penicillium chrysogenum: production, purification, and characterization of the enzyme. Protein Expr Purif 21:24–29

    Article  CAS  Google Scholar 

  • Nakagawa T, Fujimoto Y, Uchino M, Miyaji T, Takano K, Tomizuka N (2003) Isolation and characterization of psychrophiles producing cold-active beta-galactosidase. Lett Appl Microbiol 37:154–157

    Article  CAS  Google Scholar 

  • Panesar R, Panesar PS, Singh RS, Bera MB (2007) Production of lactose-hydrolyzed milk using ethanol permeabilized yeast cells. Food Chem 101:786–790

    Article  CAS  Google Scholar 

  • Pazur JH (1953) The enzymatic conversion of lactose into galactosyl oligosaccharides. Science 117:355–356

    Article  CAS  Google Scholar 

  • Pivarnik LF, Senecal AG (1995) Hydrolytic and transgalactosylic activities of commercial beta-galactosidase (lactase) in food processing. Adv Food Nutr Res 38:1–102

    Article  CAS  Google Scholar 

  • Prashar A, Jin Y, Mason B, Chae M, Bressler DC (2016) Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry. J Dairy Sci 99:1859–1867

    Article  Google Scholar 

  • Prenosil JE, Stuker E, Bourne JR (1987) Formation of oligosaccharides during enzymatic lactose: part I: state of art. Biotechnol Bioeng 30:1019–1025

    Article  CAS  Google Scholar 

  • Priebe MG, Zhong Y, Huang C, Harmsen HJ, Raangs GC, Antoine JM, Welling GW, Vonk RJ (2002) Effects of yogurt and bifidobacteria supplementation on the colonic microbiota in lactose intolerant subjects. J Appl Microbiol 104:595–604

    Google Scholar 

  • Rao MV, Dutta SM (1978) Lactase activity of microorganisms. Folia Microbiol 23:210–215

    Article  CAS  Google Scholar 

  • Rodríguez ÁP, Leiro RF, Trillo MC, Cerdán ME, Siso MIG, Becerra M (2006) Secretion and properties of a hybrid Kluyveromyces lactisAspergillus niger β-galactosidase. Microb Cell Fact 5:1–8

    Article  Google Scholar 

  • Roy I, Gupta MN (2003) Lactose hydrolysis by lactozym™ immobilized on cellulose beads in batch and fluidized bed modes. Process Biochem 39:325–332

    Article  CAS  Google Scholar 

  • Seddigh S, Darabi M (2014) Comprehensive analysis of beta-galactosidase protein in plants based on Arabidopsis thaliana. Turk J Biol 38:140–150

    Article  CAS  Google Scholar 

  • Shukla TP, Wierzbicki LE (1975) Beta-galactosidase technology: a solution to the lactose problem. Food Sci Nutr 21:325–356

    Google Scholar 

  • Silanikove N, Leitner G, Merin U (2015) The interrelationships between lactose intolerance and the modern dairy industry: global perspectives in evolutional and historical backgrounds. Nutrients 7:7312–7331

    Article  CAS  Google Scholar 

  • Silva AC, Guimarães PMR, Teixeira JA, Domingues L (2010) Fermentation of deproteinized cheese whey powder solutions to ethanol by engineered Saccharomyces cerevisiae: effect of supplementation with corn steep liquor and repeated-batch operation with biomass recycling by flocculation. J Ind Microbiol Biotechnol 37:973–982

    Article  CAS  Google Scholar 

  • Sitanggang AB, Drews A, Kraume M (2016) Recent advances on prebiotic lactulose production. World J Microbiol Biotechnol 32:154

    Article  Google Scholar 

  • Smith DL, Gross KC (2000) A family of at least seven β-galactosidase genes is expressed during tomato fruit development. Plant Physiol 123:1173–1184

    Article  CAS  Google Scholar 

  • Vandenplas Y (2015) Lactose intolerance. Asian Pac J Clin Nutr 24:S9–S13

    CAS  Google Scholar 

  • Zhou QZK, Chen XD (2001) Effects of temperature and pH on the catalytic activity of the immobilized β-galactosidase from Kluyveromyces lactis. Biochem Eng J 9:33–40

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sobia Ahsan Halim.

Ethics declarations

Conflict of interest

Author declares that no conflict of interest exists.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saqib, S., Akram, A., Halim, S.A. et al. Sources of β-galactosidase and its applications in food industry. 3 Biotech 7, 79 (2017). https://doi.org/10.1007/s13205-017-0645-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0645-5

Keywords

Navigation