Skip to main content

Advertisement

Log in

Biomimetic nanomaterials for pulmonary infections: A prospective view in drug delivery systems

  • Review Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Respiratory infections are quite challenging due to their complexity in ailments and composition of viral genetic material and their rate of proliferation. In particular, the eradication of viral illness is still a concern, irrespective of advancements in prevention and remedial procedures. The nature of the viral particle with the possibility of rapid transmission is prone to attach on the deposited surface for days together. This antigen expulses due to sneezing or coughing resulted in multiphase turbulent flow, contaminates the surroundings and is carried away by simple touch or inhalation and find newer hosts for instance, SARSCoV-2 aerosols remain viable for about an hour leading to infection. The present review focuses on the remedial aspects of respiratory infections through a knowledge-based approach towards nanosystems. The complete understanding of standard antiviral drugs and the remodelling of these drugs through nanosystems still is the need of the hour. The genetic material and epidemiology of viral antigen, help in redefining standard drugs along with nanocarriers to achieve more feasible and hour-based approach. The main goal of this review is to elaborate on the repurposing of existing standard antiviral drugs and ways to accelerate their mode of action to promote a feasible and hour-based approach. The consolidated three-dimensional approaches aimed at sustained, targeted and optimized levels of drug concentration in the circulating system along with bioactive nanocarriers which could effectively pass the cell membrane were reported. The platforms for nanomaterial evolution depend on nature of source, size, structure, and their unique functionalities (Stable, speedy, and long-lasting recovery procedure). However, the research activities and literature on coronavirus have been overwhelming but the information on the sustainability of nanotherapy in SARS-CoV-2 is still in the developmental stage. Hereby, the clinical aspects of SARS-CoV-2 and the eradication strategy developed for antiviral infections through nanotechnology will pave the way ahead for treating upcoming new variants or other pandemics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4

Similar content being viewed by others

References

Download references

Acknowledgements

Dr NU and Dr NS acknowledge the support of the Director, ICMR-National Institute for Research in Tuberculosis, and the approval from ICMR. Dr NU and Dr SVK acknowledge Director, CSIR-Central Leather Research Institute. A/2021/CHR/NWP100/1514 is the communication number obtained from CLRI.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the work and approved the final version of the manuscript.

Corresponding author

Correspondence to Natarajan Saravanan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usharani, N., Kanth, S.V. & Saravanan, N. Biomimetic nanomaterials for pulmonary infections: A prospective view in drug delivery systems. Appl Nanosci 14, 363–373 (2024). https://doi.org/10.1007/s13204-023-02981-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-023-02981-5

Keywords

Navigation