Skip to main content
Log in

Therapeutic effect of Linum usitatissimum L. in STZ-nicotinamide induced diabetic nephropathy via inhibition of AGE’s and oxidative stress

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The present study was aimed to evaluate the potential of petroleum ether and hydro-alcoholic extract of Linum usitatissimum (FPE and FHE) in STZ-nicotinamide induced diabetic nephropathy. GC–MS analysis of FPE revealed the presence of different fatty acids, heterocyclic compounds etc. Moreover, chromatography of FHE isolated Secoisolariciresinol diglycoside. After 30 days of STZ-administration, 100, 200 and 400 mg/kg of FPE and FHE were administered for 45 days. FPE and FHE produced significant attenuation in the glycemic status, renal parameter, lipid profile and level of antioxidant enzymes proving efficacy in diabetic nephropathy. Moreover, FPE and FHE produced significant reduction in the formation of AGEs in kidney. The results indicated that via amelioration oxidative stress and formation of AGEs, FPE and FHE produced significant nephroprotective effect in STZ- induced diabetic nephropathy in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BUN:

Blood urea nitrogen

FHE:

Flaxseed hydroalcoholic extract

FPE:

Flaxseed petroleum ether extract

GSH:

Glutathione

HDL:

High density lipoproteins

LDL:

Low density lipoproteins

VLDL:

Very low density lipoproteins

i.p. :

Intraperitoneal administration

LPO:

Lipid peroxidation

MAPKs:

Mitogen activated protein kinases

SOD:

Superoxide dismutase

SDG:

Secoisolariciresinol diglycoside

STZ:

Streptozotocin

TBARS:

Thiobarbituric acid reactive substances

TNF-α:

Tumor necrosis factor-α

References

  • Abe H, Matsubara T, Arai H, Doi T (2011) Role of Smad1 in diabetic nephropathy: molecular mechanisms and implications as a diagnostic marker. Histol Histopathol 26:531–541

    CAS  Google Scholar 

  • Aurell M, Bjorck S (1992) Determination of progressive renal disease in diabetes mellitus. Kidney Int 41:38–42

    Google Scholar 

  • Baker JR, Metcalf PA, Johnson RN, Newman D, Rietz P (1985) Use of protein-based standards in automated colorimetric determinations of fructosamine in serum. Clin Chem 31:1550–1554

    CAS  Google Scholar 

  • Bassett CM, McCullough RS, Edel AL, Patenaude A, LaVallee RK, Pierce GN (2011) The α-linolenic acid content of flaxseed can prevent the atherogenic effects of dietary trans fat. Am J Physiol Heart Circ Physiol 301(6):H2220–H2226

    Article  CAS  Google Scholar 

  • Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–890

    CAS  Google Scholar 

  • Bhat M, Zinjarde SS, Bhargava SY, Kumar AR, Joshi BN (2011) Antidiabetic Indian plants: a good source of potent amylase inhibitors. Evid Based Complement Alternat Med 2011:810207

    Google Scholar 

  • Boham BA, Kocipal-Abyazan R (1974) Flavonoids and condensed tannins from leaves of Hawaiian vaccinium vaticulatum and V. calycinum. Pac Sci 48:458–463

    Google Scholar 

  • Brownlee M, Aiello LP, Cooper ME, Vinik AI, Nesto RW, Boulton AJM (2008) Com-plications of diabetes mellitus. In: Kronenberg HM, Melmed S, Polonsky KS, Larsen PR (eds) Williams textbook of endocrinology. Saun-ders Elsevier, Philadelphia, pp 1417–1501

    Google Scholar 

  • Cooper ME (2001) Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy. Diabetologia 44:1957–1972

    Article  CAS  Google Scholar 

  • Cowie CC, Port FK, Wolfe RA, Savage PJ, Moll PP, Hawthorne VM (1989) Disparities in incidence of diabetic end-stage renal disease according to race and type of diabetes. N Engl J Med 321:1074–1079

    Article  CAS  Google Scholar 

  • Cunnane SC, Hamadeh MJ, Liede AC, Thompson LU, Wolever TMS, Jenkins DJA (1995) Nutritional attributes of traditional flaxseed in healthy young adults. Am J Clin Nutr 61:62–68

    CAS  Google Scholar 

  • Forbes JM, Cooper ME, Oldfield MD, Thomas MC (2003) Role of advanced glycation end products in diabetic nephropathy. J Am Soc Nephrol 14:S254–S258

    Article  CAS  Google Scholar 

  • Ghose K, Selvaraj K, McCallum J, Kirby CW, Sweeney-Nixon M, Cloutier SJ, Deyholos M, Datla R, Fofana B (2014) Identification and functional characterization of a flax UDP-glycosyltransferase glucosylating secoisolariciresinol (SECO) into secoisolariciresinol monoglucoside (SMG) and diglucoside (SDG). BMC Plant Biol 14(1):1

    Article  Google Scholar 

  • Ghule AE, Jadhav SS, Bodhankar SL (2011) Renoprotective effect of Linum usitatissimum seeds through haemodynamic changes and conservation of antioxidant enzymes in renal ischaemia-reperfusion injury in rats. Arab J Urol 9:215–221

    Article  Google Scholar 

  • Goh SY, Cooper ME (2008) The role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab 93:1143–11452

    Article  CAS  Google Scholar 

  • Gok M, Ulusu NN, Tarhan N, Tufan C, Ozansoy G, Arı N, Karasu C (2016) Flaxseed protects against diabetes-induced glucotoxicity by modulating pentose phosphate pathway and glutathione-dependent enzyme activities in rats. J Diet Suppl 13(3):339–351

    Article  CAS  Google Scholar 

  • Hano C, Martin I, Fliniaux O, Legrand B, Gutierrez L, Arroo RR et al (2006) Pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds. Planta 224:1291–1301

    Article  CAS  Google Scholar 

  • Harborne JB (1984) Phytochemical methods: a guide to modern techniques of plant analysis, vol 3, 2nd edn. Chapman and Hall, New York, pp 100–117

  • Harborne JB (1998) Phytochemical methods: a guide to modern techniques of plant analysis. Chapman and Hall, London

    Google Scholar 

  • Hasler CM, Kundrat S, Wool D (2000) Functional foods and cardiovascular disease. Curr Atheroscler Rep 2:467–475

    Article  CAS  Google Scholar 

  • Kaur N, Kishore L, Singh R (2016) Attenuating diabetes: What really works? Curr Diabetes Rev 12:259–78

    Article  Google Scholar 

  • Kim MJ, Ryu GR, Chung JS, Sim SS, Min Dos Rhie DJ, Yoon SH, Jo YM (2003) Protective effect of epicatechin against the toxic effects of STZ on rat pancreatic islets: in vivo and in vitro. Pancreas 26:292–299

    Article  CAS  Google Scholar 

  • Liggins J, Grimwood R, Bingham SA (2000) Extraction and quantification of lignan phytoestrogens in food and human samples. Anal Biochem 287:102–109

    Article  CAS  Google Scholar 

  • Matsuda H, Wang T, Managi H, Yoshikawa M (2003) Structural requirements of flavonoids for inhibition of protein glycation and radical scavenging activities. Bioorg Med Chem 11:5317–5323

    Article  CAS  Google Scholar 

  • O’Keefe JH, Bell DSH (2007) Postprandial hyperglycemia/hyperlipidemia (postprandial dysmetabolism): is a cardiovascular risk factor. Am J Cardiol 100:899–904

    Article  Google Scholar 

  • Obadoni BO, Ochuko PO (2001) Phytochemical studies and comparative efficacy of crude extracts of some homeostatic plants in Edo and Delta States of Nigeria. Glob J Pure Appl Sci 8:203–208

    Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay of lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  • Pan D, Zhang D, Wu J, Chen C, Xu Z, Yang H, Zhou P (2014) A novel proteoglycan from Ganoderma lucidum fruiting bodies protects kidney function and ameliorates diabetic nephropathy via its antioxidant activity in C57BL/6 db/db mice. Food Chem Toxicol 63:111–118

    Article  CAS  Google Scholar 

  • Polavarapu R, Spitz DR, Sim JE, Follansbee MH, Oberley LW, Rahemtulla A, Nanji AA (1998) Increased lipid peroxidation and impaired antioxidant enzyme function is associated with pathological liver injury in experimental alcoholic liver disease in rats fed diets high in corn oil and fish oil. Hepatology 27:1317–1323

    Article  CAS  Google Scholar 

  • Prasad K (2000) Antioxidant activity of secoisolariciresinol diglucosidederived metabolites, secoisolariciresinol, enterodiol, and enterolactone. Int J Angiol 9:220–225

    Article  CAS  Google Scholar 

  • Prasad K (2008) Regression of hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed. Atherosclerosis 197:34–42

    Article  CAS  Google Scholar 

  • Ricci A, Piccolella S (2012) From the collisionally induced dissociation to the enzyme-mediated reactions: the electron flux within the lignan furanic ring. Tandem Mass Spectrom Appl Princ 26:619–634 (InTech, ISBN: 978-953-51-0141-3)

    Google Scholar 

  • Rodriguez-Leyva D, Weighell W, Edel AL, LaVallee R, Dibrov E, Pinneker R, Maddaford TG, Ramjiawan B, Aliani M, Guzman R, Pierce GN (2013) Potent antihypertensive action of dietary flaxseed in hypertensive patients. Hypertension 62:1081–1089

    Article  CAS  Google Scholar 

  • Sensi M, Pricci F, Pugliese G, De Rossi MG, Petrucci AF, Cristina A et al (1996) Role of advanced glycation end-products (AGE) in late diabetic complications. Diabetes Res Clin Pract 28:9–17

    Article  Google Scholar 

  • Singh R, Kaur N, Kishore L, Gupta GK (2013) Management of diabetic complications: a chemical constituents based approach. J Ethnopharmacol 150:51–70

    Article  CAS  Google Scholar 

  • Singh R, Devi S, Gollen R (2015) Role of free radical in atherosclerosis, diabetes and dyslipidaemia: larger-than-life. Diabetes Metab Res Rev 31:113–126

    Article  CAS  Google Scholar 

  • Sudha P, Zinjarde SS, Bhargava SY, Kumar AR (2011) Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complement Altern Med 11:5

    Article  Google Scholar 

  • Swanston-Fiatt SK, Day C, Bailey CJ, Flatt PR (1990) Traditional plant treatments for diabetes: studies in normal and streptozotocin diabetic mice. Diabetologia 33:462–464

    Article  Google Scholar 

  • Thomas S, Karalliedde J (2015) Diabetic nephropathy. Medicine 43:20–25

    Article  Google Scholar 

  • Thompson LU, Seidl MM, Rickard SE (1996) Antitumorigenic effect of a mammalian lignan precursor from flaxseed. Nutr Cancer 26:159–165

    Article  CAS  Google Scholar 

  • Tomás-Zapico C, Coto-Montes A (2007) Melatonin as antioxidant under pathological processes. Recent Pat Endocr Metab Immune Drug Discov 1:63–82

    Article  Google Scholar 

  • Tupe RS, Sankhe NM, Shaikh SA, Phatak DV, Parikh JU, Khaire AA, Kemse NG (2015) Aqueous extract of some indigenous medicinal plants inhibits glycation at multiple stages and protects erythrocytes from oxidative damage-an in vitro study. J Food Sci Technol 52(4):1911–1923

    Article  CAS  Google Scholar 

  • UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853

    Article  Google Scholar 

  • Yamagishi S, Matsui T (2010) Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxid Med Cell Longev 3:101–108

    Article  Google Scholar 

  • Zanwar AA, Hegde MV, Bodhankar SL (2011) Cardioprotective activity of flax lignan concentrate extracted from seed of Linum usitatissimum in isoprenalin induced myocardial necrosis in rats. Interdiscip Toxicol 4(2):90–97

    Article  Google Scholar 

  • Zhang J, Xie X, Li C, Fu P (2009) Systematic review of the renal protective effect of Astragalus membranaceus (root) on diabetic nephropathy in animal models. J Ethnopharmacol 126:189–196

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial assistance (F. NO. SB/FT/LS-359/2012) from Department of Science and Technology, New Delhi, Government of India is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randhir Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, N., Kishore, L. & Singh, R. Therapeutic effect of Linum usitatissimum L. in STZ-nicotinamide induced diabetic nephropathy via inhibition of AGE’s and oxidative stress. J Food Sci Technol 54, 408–421 (2017). https://doi.org/10.1007/s13197-016-2477-4

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-016-2477-4

Keywords

Navigation