Skip to main content

Advertisement

Log in

Application of Nanozymes and its Progress in the Treatment of Ischemic Stroke

  • Review
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Nanozymes are a new kind of material which has been applied since the beginning of this century, and its birth has promoted the development of chemistry, materials science, and biology. Nanozymes can be used as a substitute for natural enzyme and has a wide range of applications; therefore, it has attracted extensive attention from all sectors of the community, and the number of studies has constantly increasing. In this paper, we introduced the outstanding achievements in the field of nanozymes in recent years from the main function, the construction of nanozyme-based biosensors, and the treatment of ischemic stroke, and we also illustrated the internal mechanism and the catalytic principle. In the end, the obstacles and challenges in the future development of nanozymes were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AchE:

acetylcholinesterase

ACP:

acid phosphatase

ALP:

alkaline phosphatase

BBB:

blood-brain barrier

C60 :

fullerene

CAT:

catalase

C-dots:

carbon nanodots

CEA:

carcinoembryonic antigen

ChI:

choline iodide

CL:

chemiluminescence

DA:

dopamine

Eda:

edaravone

GDYO:

graphdiyne oxide

GO-COOH:

carboxyl-modified graphene oxide

GOD:

glucose oxidase

GOQD:

graphene oxide quantum dot

GPx:

glutathione peroxidase

GQD:

graphene quantum dots

GSHOX:

glutathione oxidase

H2O2 :

hydrogen peroxide

HRP:

horseradish peroxidase

MOF:

metal-organic framework

NPs:

nanoparticles

OTA:

ochratoxin A

OXD:

oxidase

oxTMB:

oxidation TMB

pDA:

polydopamine

POD:

peroxidase

PTT:

photothermal therapy

RONs:

reactive nitrogen species

ROS:

reactive oxygen species

SERS:

surface-enhanced Raman scattering

SOD:

superoxide dismutase

TA:

terephthalic acid

TMB:

3,3’,5,5’-tetramethylbenzidine

UDG:

uracil DNA glycosylase

References

  1. Wu Y, Xu W, Jiao L, et al. Defect engineering in nanozymes. Mater Today. 2022;52:327–47. https://doi.org/10.1016/j.mattod.2021.10.032.

    Article  CAS  Google Scholar 

  2. Zhang X, Wu D, Zhou X, et al. Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. Trends Analyt Chem. 2019;121:115668. https://doi.org/10.1016/j.trac.2019.115668.

    Article  CAS  Google Scholar 

  3. Gao L, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2:577–83. https://doi.org/10.1038/nnano.2007.260.

    Article  CAS  PubMed  Google Scholar 

  4. Wang GL, Jin LY, Dong YM, et al. Intrinsic enzyme mimicking activity of gold nanoclusters upon visible light triggering and its application for colorimetric trypsin detection. Biosens Bioelectron. 2015;64:523–9. https://doi.org/10.1016/j.bios.2014.09.071.

    Article  CAS  PubMed  Google Scholar 

  5. Kumawat M, Madhyastha H, Singh M, et al. Functional silver nanozymes regulate cell inflammatory cytokines expression in mouse macrophages. Colloids Surf A Physicochem Eng Asp. 2022;650. https://doi.org/10.1016/j.colsurfa.2022.129294.

  6. Ma Z, Wu L, Han K, et al. Pt nanozyme for O2 self-sufficient, tumor-specific oxidative damage and drug resistance reversal. Nanoscale Horiz. 2019;4:1124–31. https://doi.org/10.1039/c9nh00088g.

    Article  CAS  Google Scholar 

  7. Chang M, Hou Z, Wang M, et al. Single-atom pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy. Angew Chem Int Ed Engl. 2021;60:12971–9. https://doi.org/10.1002/anie.202101924.

    Article  CAS  PubMed  Google Scholar 

  8. Rai M, Pandit R, Paralikar P, et al. Copper and copper nanoparticles: role in management of insect-pests and pathogenic microbes. Nanotechnol Rev. 2018;7:303–15. https://doi.org/10.1515/ntrev-2018-0031.

    Article  CAS  Google Scholar 

  9. Yan BC, Cao J, Liu J, et al. Dietary Fe3O4 nanozymes prevent the injury of neurons and blood-brain barrier integrity from cerebral ischemic stroke. ACS Biomater Sci Eng. 2021;7:299–310. https://doi.org/10.1021/acsbiomaterials.0c01312.

    Article  CAS  PubMed  Google Scholar 

  10. Feng N, Liu Y, Dai X, et al. Advanced applications of cerium oxide based nanozymes in cancer. RSC Adv. 2022;12:1486–93. https://doi.org/10.1039/d1ra05407d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karim MN, Singh M, Weerathunge P, et al. Visible-light-triggered reactive-oxygen-species-mediated antibacterial activity of peroxidase-mimic CuO nanorods. ACS Appl Nano Mater. 2018;1:1694–704. https://doi.org/10.1021/acsanm.8b00153.

    Article  CAS  Google Scholar 

  12. Cheng Y, Cheng C, Yao J, et al. Mn3O4 nanozyme for inflammatory bowel disease therapy. Adv Ther. 2021;4:2100081. https://doi.org/10.1002/adtp.202100081.

    Article  CAS  Google Scholar 

  13. Ray C, Dutta S, Sarkar S, et al. Intrinsic peroxidase-like activity of mesoporous nickel oxide for selective cysteine sensing. J Mater Chem B. 2014;2:6097–105. https://doi.org/10.1039/c4tb00968a.

    Article  CAS  PubMed  Google Scholar 

  14. Ghosh S, Roy P, Karmodak N, et al. Nanoisozymes: crystal-facet-dependent enzyme-mimetic activity of V2O5 nanomaterials. Angew Chem Int Ed Engl. 2018;57:4510–5. https://doi.org/10.1002/anie.201800681.

    Article  CAS  PubMed  Google Scholar 

  15. Ma W, Xue Y, Guo S, et al. Graphdiyne oxide: a new carbon nanozyme. Chem Commun (Camb). 2020;56:5115–8. https://doi.org/10.1039/d0cc01840f.

    Article  CAS  PubMed  Google Scholar 

  16. Sun H, Zhao A, Gao N, et al. Deciphering a nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew Chem Int Ed Engl. 2015;54:7176–80. https://doi.org/10.1002/anie.201500626.

    Article  CAS  PubMed  Google Scholar 

  17. Ali SS, Hardt JI, Quick KL, et al. A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic Biol Med. 2004;37:1191–202. https://doi.org/10.1016/j.freeradbiomed.2004.07.002.

    Article  CAS  PubMed  Google Scholar 

  18. Ren C, Hu X, Zhou Q. Graphene oxide quantum dots reduce oxidative stress and inhibit neurotoxicity in vitro and in vivo through catalase-like activity and metabolic regulation. Adv Sci. 2018;5:1700595. https://doi.org/10.1002/advs.201700595.

    Article  CAS  Google Scholar 

  19. Song Y, Qu K, Zhao C, et al. Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater. 2010;22:2206–10. https://doi.org/10.1002/adma.200903783.

    Article  CAS  PubMed  Google Scholar 

  20. Shi W, Wang Q, Long Y, et al. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun (Camb). 2011;47:6695–7. https://doi.org/10.1039/c1cc11943e.

    Article  CAS  PubMed  Google Scholar 

  21. Xi J, Wei G, An L, et al. Copper/carbon hybrid nanozyme: tuning catalytic activity by the copper state for antibacterial therapy. Nano Lett. 2019;19:7645–54. https://doi.org/10.1021/acs.nanolett.9b02242.

    Article  CAS  PubMed  Google Scholar 

  22. Wei F, Cui X, Wang Z, et al. Recoverable peroxidase-like fe3o4@MoS2-Ag nanozyme with enhanced antibacterial ability. Chem Eng J. 2021;408:127240. https://doi.org/10.1016/j.cej.2020.127240.

    Article  CAS  PubMed  Google Scholar 

  23. Lu C, Liu X, Li Y, et al. Multifunctional janus hematite-silica nanoparticles: mimicking peroxidase-like activity and sensitive colorimetric detection of glucose. ACS Appl Mater Interfaces. 2015;7:15395–402. https://doi.org/10.1021/acsami.5b03423.

    Article  CAS  PubMed  Google Scholar 

  24. Zhuang Z, Zhang C, Yu Z, et al. Turn-on colorimetric detection of hydroquinone based on Au/CuO nanocomposite nanozyme. Mikrochim Acta. 2022;189:293. https://doi.org/10.1007/s00604-022-05384-5.

    Article  CAS  PubMed  Google Scholar 

  25. Huang Y, Liu Z, Liu C, et al. Self-assembly of multi-nanozymes to mimic an intracellular antioxidant defense system. Angew Chem Int Ed Engl. 2016;55:6646–50. https://doi.org/10.1002/anie.201600868.

    Article  CAS  PubMed  Google Scholar 

  26. Liu J, Hu X, Hou S, et al. Au@Pt core/shell nanorods with peroxidase- and ascorbate oxidase-like activities for improved detection of glucose. Sens Actuators B Chem. 2012;166-7:708–14. https://doi.org/10.1016/j.snb.2012.03.045.

    Article  CAS  Google Scholar 

  27. Chen Q, Liang C, Zhang X, et al. High oxidase-mimic activity of Fe nanoparticles embedded in an N-rich porous carbon and their application for sensing of dopamine. Talanta. 2018;182:476–83. https://doi.org/10.1016/j.talanta.2018.02.032.

    Article  CAS  PubMed  Google Scholar 

  28. Ma Y, Tian Z, Zhai W, et al. Insights on catalytic mechanism of ceo2 as multiple nanozymes. Nano Res. 2022:1–15. https://doi.org/10.1007/s12274-022-4666-y.

  29. Liao X, Xu Q, Sun H, et al. Plasmonic nanozymes: localized surface plasmonic resonance regulates reaction kinetics and antibacterial performance. J Phys Chem Lett. 2022;13:312–23. https://doi.org/10.1021/acs.jpclett.1c03804.

    Article  CAS  PubMed  Google Scholar 

  30. Rostami S, Mehdinia A, Jabbari A. Intrinsic peroxidase-like activity of graphene nanoribbons for label-free colorimetric detection of dopamine. Mater Sci Eng C Mater Biol Appl. 2020;114:111034. https://doi.org/10.1016/j.msec.2020.111034.

    Article  CAS  PubMed  Google Scholar 

  31. Chen K, Sun S, Wang J, et al. Catalytic nanozymes for central nervous system disease. Coord Chem Rev. 2021;432:213751. https://doi.org/10.1016/j.ccr.2020.213751.

    Article  CAS  Google Scholar 

  32. Singh N. Antioxidant metal oxide nanozymes: role in cellular redox homeostasis and therapeutics. Pure Appl Chem. 2021;93:187–205. https://doi.org/10.1515/pac-2020-0802.

    Article  CAS  Google Scholar 

  33. Xiong B, Xu R, Zhou R, et al. Preventing UV induced cell damage by scavenging reactive oxygen species with enzyme-mimic Au-Pt nanocomposites. Talanta. 2014;120:262–7. 16/j.talanta.2013.12.020

    Article  CAS  PubMed  Google Scholar 

  34. Cao Y, Liu J, Zou L, et al. Ratiometric fluorescence sensing of glutathione by using the oxidase-mimicking activity of MnO2 nanosheet. Anal Chim Acta. 2021;1145:46–51. https://doi.org/10.1016/j.aca.2020.12.019.

    Article  CAS  PubMed  Google Scholar 

  35. Huang Y, Ren J, Qu X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev. 2019;119:4357–412. https://doi.org/10.1021/acs.chemrev.8b00672.

    Article  CAS  PubMed  Google Scholar 

  36. Naghavi M, Abajobir AA, Abbafati C, et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the global burden of disease study 2016. Lancet. 2017;390:1151–210. https://doi.org/10.1016/s0140-6736(17)32152-9.

    Article  Google Scholar 

  37. Vanova V, Mitrevska K, Milosavljevic V, et al. Peptide-based electrochemical biosensors utilized for protein detection. Biosens Bioelectron. 2021;180:113087. https://doi.org/10.1016/j.bios.2021.113087.

    Article  CAS  PubMed  Google Scholar 

  38. Ashrafi AM, Bytesnikova Z, Barek J, et al. A critical comparison of natural enzymes and nanozymes in biosensing and bioassays. Biosens Bioelectron. 2021;192:113494. https://doi.org/10.1016/j.bios.2021.113494.

    Article  CAS  PubMed  Google Scholar 

  39. Xue Q, Li X, Peng Y, et al. Polyethylenimine-stabilized silver nanoclusters act as an oxidoreductase mimic for colorimetric determination of chromium(vi). Mikrochim Acta. 2020;187:263. https://doi.org/10.1007/s00604-020-04232-8.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou X, Wang M, Wang M, et al. Nanozyme-based detection of alkaline phosphatase. ACS Appl Nano Mater. 2021;4:7888–96. https://doi.org/10.1021/acsanm.1c01220.

    Article  CAS  Google Scholar 

  41. Ma Q, Qiao J, Liu Y, et al. Colorimetric monitoring of serum dopamine with promotion activity of gold nanocluster-based nanozymes. Analyst. 2021;146:6615–20. https://doi.org/10.1039/d1an01511g.

    Article  CAS  PubMed  Google Scholar 

  42. Liu Q, Tian J, Liu J, et al. Modular assembly of tumor-penetrating and oligomeric nanozyme based on intrinsically self-assembling protein nanocages. Adv Mater. 2021;33:e2103128. https://doi.org/10.1002/adma.202103128.

    Article  CAS  PubMed  Google Scholar 

  43. Boguniewicz-Zablocka J, Klosok-Bazan I, Naddeo V. Water quality and resource management in the dairy industry. Environ Sci Pollut Res Int. 2019;26:1208–16. https://doi.org/10.1007/s11356-017-0608-8.

    Article  CAS  PubMed  Google Scholar 

  44. Durán N, Esposito E. Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B. 2000;28:83–99. https://doi.org/10.1016/s0926-3373(00)00168-5.

    Article  Google Scholar 

  45. Klibanov AM, Morris ED. Horseradish peroxidase for the removal of carcinogenic aromatic amines from water. Enzyme Microb. Technol. 1981;3:119–22. https://doi.org/10.1016/0141-0229(81)90069-7.

    Article  CAS  Google Scholar 

  46. Wang J, Huang R, Qi W, et al. Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants. Appl Catal B. 2019;254:452–62. https://doi.org/10.1016/j.apcatb.2019.05.012.

    Article  CAS  Google Scholar 

  47. Wang FM, Zhang Y, Liu ZW, et al. Mesoporous encapsulated nanozyme decontaminating two kinds of wastewater and avoiding secondary pollution. Nanoscale. 2020;12:14465–71. https://doi.org/10.1039/d0nr03217d.

    Article  CAS  PubMed  Google Scholar 

  48. Luo Q, Li J, Wang W, et al. Transition metal engineering of molybdenum disulfide nanozyme for biomimicking anti-biofouling in seawater. ACS Appl Mater Interfaces. 2022;14:14218–25. https://doi.org/10.1021/acsami.2c00172.

    Article  CAS  PubMed  Google Scholar 

  49. Fu T, Xu C, Guo R, et al. Zeolitic imidazolate framework-90 nanoparticles as nanozymes to mimic organophosphorus hydrolase. ACS Appl Nano Mater. 2021;4:3345–50. https://doi.org/10.1021/acsanm.1c00540.

    Article  CAS  Google Scholar 

  50. Peng M, Zhao Z, Liang Z. Biodegradation of ochratoxin A and ochratoxin B by brevundimonas naejangsanensis isolated from soil. Food Control. 2022;133. https://doi.org/10.1016/j.foodcont.2021.108611.

  51. Tian F, Zhou J, Jiao B, et al. A nanozyme-based cascade colorimetric aptasensor for amplified detection of ochratoxin a. Nanoscale. 2019;11:9547–55. https://doi.org/10.1039/c9nr02872b.

    Article  CAS  PubMed  Google Scholar 

  52. Wang H, Li P, Yu D, et al. Unraveling the enzymatic activity of oxygenated carbon nanotubes and their application in the treatment of bacterial infections. Nano Lett. 2018;18:3344–51. https://doi.org/10.1021/acs.nanolett.7b05095.

    Article  CAS  PubMed  Google Scholar 

  53. Yu G, Cheng Y, Duan Z. Research progress of polymers/inorganic nanocomposite electrical insulating materials. Molecules. 2022;27(22):7867. https://doi.org/10.3390/molecules27227867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Holzinger M, Le Goff A, Cosnier S. Synergetic effects of combined nanomaterials for biosensing applications. Sensors (Basel). 2017;17(5):1010. https://doi.org/10.3390/s17051010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liang X, Li N, Zhang R, et al. Carbon-based sers biosensor: from substrate design to sensing and bioapplication. NPG Asia Mater. 2021:13. https://doi.org/10.1038/s41427-020-00278-5.

  56. Zhao Y, Li L, Ma R, et al. A competitive colorimetric aptasensor transduced by hybridization chain reaction-facilitated catalysis of aunps nanozyme for highly sensitive detection of saxitoxin. Anal Chim Acta. 2021;1173:338710. https://doi.org/10.1016/j.aca.2021.338710.

    Article  CAS  PubMed  Google Scholar 

  57. Xue L, Jin N, Guo R, et al. Microfluidic colorimetric biosensors based on MnO2 nanozymes and convergence-divergence spiral micromixers for rapid and sensitive detection of salmonella. ACS Sens. 2021;6:2883–92. https://doi.org/10.1021/acssensors.1c00292.

    Article  CAS  PubMed  Google Scholar 

  58. Chen M, Sun L, Ding Y, et al. N,n′-di-carboxymethyl perylene diimide functionalized magnetic nanocomposites with enhanced peroxidase-like activity for colorimetric sensing of H2O2 and glucose. New J Chem. 2017;41:5853–62. https://doi.org/10.1039/c7nj00292k.

    Article  CAS  Google Scholar 

  59. Lu D, Li J, Wu Z, et al. High-activity daisy-like zeolitic imidazolate framework-67/reduced grapheme oxide-based colorimetric biosensor for sensitive detection of hydrogen peroxide. J Colloid Interface Sci. 2022;608:3069–78. https://doi.org/10.1016/j.jcis.2021.11.034.

    Article  CAS  PubMed  Google Scholar 

  60. Song C, Liu H, Zhang L, et al. Fes nanoparticles embedded in 2D carbon nanosheets as novel nanozymes with peroxidase-like activity for colorimetric and fluorescence assay of H2O2 and antioxidant capacity. Sens Actuators B Chem. 2022;353. https://doi.org/10.1016/j.snb.2021.131131.

  61. Qu H, Fan C, Chen M, et al. Recent advances of fluorescent biosensors based on cyclic signal amplification technology in biomedical detection. J Nanobiotechnology. 2021;19:403. https://doi.org/10.1186/s12951-021-01149-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Guo J, Wu S, Wang Y, et al. A label-free fluorescence biosensor based on a bifunctional MIL-101(Fe) nanozyme for sensitive detection of choline and acetylcholine at nanomolar level. Sens Actuators B Chem. 2020:312. https://doi.org/10.1016/j.snb.2020.128021.

  63. Zou W, Liu Y, Li R, et al. Ingenious multifunctional MnO2 quantum dot nanozymes with superior catechol oxidase-like activity for highly selective sensing of redox-active dopamine based on an interfacial passivation strategy. ACS Sustain Chem Eng. 2022;10:10057–67. https://doi.org/10.1021/acssuschemeng.2c02981.

    Article  CAS  Google Scholar 

  64. Li S, Hu X, Chen Q, et al. Introducing bifunctional metal-organic frameworks to the construction of a novel ratiometric fluorescence sensor for screening acid phosphatase activity. Biosens Bioelectron. 2019;137:133–9. https://doi.org/10.1016/j.bios.2019.05.010.

    Article  CAS  PubMed  Google Scholar 

  65. Khoshfetrat SM, Fasihi K, Moradnia F, et al. A label-free multicolor colorimetric and fluorescence dual mode biosensing of HIV-1 DNA based on the bifunctional NiFe2O4@UiO-66 nanozyme. Anal Chim Acta. 2023;1252:341073. https://doi.org/10.1016/j.aca.2023.341073.

    Article  CAS  PubMed  Google Scholar 

  66. Mao X, Lu Y, Zhang X, et al. Beta-cyclodextrin functionalization of metal-organic framework MOF-235 with excellent chemiluminescence activity for sensitive glucose biosensing. Talanta. 2018;188:161–7. https://doi.org/10.1016/j.talanta.2018.05.077.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang X, Li G, Wu D, et al. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens Bioelectron. 2019;137:178–98. https://doi.org/10.1016/j.bios.2019.04.061.

    Article  CAS  PubMed  Google Scholar 

  68. Halawa MI, Xia Q, Li BS. An ultrasensitive chemiluminescent biosensor for tracing glutathione in human serum using BSA@AuNCs as a peroxidase-mimetic nanozyme on a luminol/artesunate system. J Mater Chem B. 2021;9:8038–47. https://doi.org/10.1039/d1tb01343b.

    Article  CAS  PubMed  Google Scholar 

  69. Li J, Cao Y, Hinman SS, et al. Efficient label-free chemiluminescent immunosensor based on dual functional cupric oxide nanorods as peroxidase mimics. Biosens Bioelectron. 2018;100:304–11. https://doi.org/10.1016/j.bios.2017.09.011.

    Article  CAS  PubMed  Google Scholar 

  70. Montali L, Calabretta MM, Lopreside A, et al. Multienzyme chemiluminescent foldable biosensor for on-site detection of acetylcholinesterase inhibitors. Biosens Bioelectron. 2020;162:112232. https://doi.org/10.1016/j.bios.2020.112232.

    Article  CAS  PubMed  Google Scholar 

  71. Lin Y, Wu L, Huang Y, et al. Positional assembly of hemin and gold nanoparticles in graphene–mesoporous silica nanohybrids for tandem catalysis. Chem Sci. 2015;6:1272–6. https://doi.org/10.1039/c4sc02714k.

    Article  CAS  PubMed  Google Scholar 

  72. Khoshfetrat SM, Khoshsafar H, Afkhami A, et al. Enhanced visual wireless electrochemiluminescence immunosensing of prostatespecific antigen based on the luminol loaded into MIL-53(Fe)-NH2 accelerator and hydrogen evolution reaction mediation. Anal Chem. 2019;91:6383–90. https://doi.org/10.1021/acs.analchem.9b01506.

    Article  CAS  PubMed  Google Scholar 

  73. Lv W, Ye J, Yuan Z, et al. Recent advances in electrochemiluminescence-based simultaneous detection of multiple targets. TrAC Trends Anal Chem. 2020;123:115767. https://doi.org/10.1016/j.trac.2019.115767.

    Article  CAS  Google Scholar 

  74. Khoshfetrat SM, Hashemi P, Afkhami A, et al. Cascade electrochemiluminescence-based integrated graphitic carbon nitride-encapsulated metal-organic framework nanozyme for prostate-specific antigen biosensing. Sens Actuators B Chem. 2021;348:130658. https://doi.org/10.1016/j.snb.2021.130658.

    Article  CAS  Google Scholar 

  75. Bizzotto D, Burgess IJ, Doneux T, et al. Beyond simple cartoons: challenges in characterizing electrochemical biosensor interfaces. ACS Sens. 2018;3:5–12. https://doi.org/10.1021/acssensors.7b00840.

    Article  CAS  PubMed  Google Scholar 

  76. Khanmohammadi A, Aghaie A, Vahedi E, et al. Electrochemical biosensors for the detection of lung cancer biomarkers: a review. Talanta. 2020;206:120251. https://doi.org/10.1016/j.talanta.2019.120251.

    Article  CAS  PubMed  Google Scholar 

  77. Uniyal S, Sharma RK. Technological advancement in electrochemical biosensor based detection of organophosphate pesticide chlorpyrifos in the environment: a review of status and prospects. Biosens Bioelectron. 2018;116:37–50. https://doi.org/10.1016/j.bios.2018.05.039.

    Article  CAS  PubMed  Google Scholar 

  78. Li X, Li X, Li D, et al. Electrochemical biosensor for ultrasensitive exosomal miRNA analysis by cascade primer exchange reaction and MOF@Pt@MOF nanozyme. Biosens Bioelectron. 2020;168:112554. https://doi.org/10.1016/j.bios.2020.112554.

    Article  CAS  PubMed  Google Scholar 

  79. Li Y, Zhang C, He Y, et al. A generic and non-enzymatic electrochemical biosensor integrated molecular beacon-like catalyzed hairpin assembly circuit with MOF@Au@G-triplex/hemin nanozyme for ultrasensitive detection of miR-721. Biosens Bioelectron. 2022;203:114051. https://doi.org/10.1016/j.bios.2022.114051.

    Article  CAS  PubMed  Google Scholar 

  80. Liu T, Li Z, Chen M, et al. Sensitive electrochemical biosensor for uracil-DNA glycosylase detection based on self-linkable hollow Mn/Ni layered doubled hydroxides as oxidase-like nanozyme for cascade signal amplification. Biosens Bioelectron. 2021;194:113607. https://doi.org/10.1016/j.bios.2021.113607.

    Article  CAS  PubMed  Google Scholar 

  81. Yu R, Xue J, Wang Y, et al. Novel Ti3C2Tx MXene nanozyme with manageable catalytic activity and application to electrochemical biosensor. J Nanobiotechnology. 2022;20:119. https://doi.org/10.1186/s12951-022-01317-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Matsuhisa N, Chen X, Bao Z, et al. Materials and structural designs of stretchable conductors. Chem Soc Rev. 2019;48:2946–66. https://doi.org/10.1039/c8cs00814k.

    Article  CAS  PubMed  Google Scholar 

  83. Wu Y, Chen JY, He WM. Surface-enhanced Raman spectroscopy biosensor based on silver nanoparticles@metal-organic frameworks with peroxidase-mimicking activities for ultrasensitive monitoring of blood cholesterol. Sens Actuators B Chem. 2022;365. https://doi.org/10.1016/j.snb.2022.131939.

  84. Huang S, Wu C, Wang Y, et al. Ag/TiO2 nanocomposites as a novel SERS substrate for construction of sensitive biosensor. Sens Actuators B Chem. 2021;339:129843. https://doi.org/10.1016/j.snb.2021.129843.

    Article  CAS  Google Scholar 

  85. Tang R, Xia X, Zhang X, et al. Synergistic function of au NPs/GeO2 nanozymes with enhanced peroxidase-like activity and SERS effect to detect choline iodide. Spectrochim Acta A Mol Biomol Spectrosc. 2022;266:120467. https://doi.org/10.1016/j.saa.2021.120467.

    Article  CAS  PubMed  Google Scholar 

  86. Tan Y, Jiang H, Wang B, et al. MoS2-based composite nanozymes with superior peroxidase-like activity for ultrasensitive SERS detection of glucose. New J Chem. 2021;45:19593–604. https://doi.org/10.1039/d1nj02451e.

    Article  CAS  Google Scholar 

  87. Banerjee A, McCullough LD. Sex-specific immune responses in stroke. Stroke. 2022;53(5):1449–59. https://doi.org/10.1161/STROKEAHA.122.036945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jurcau A, Ardelean AI. Oxidative stress in ischemia/reperfusion injuries following acute ischemic stroke. Biomedicines. 2022;10(3):574. https://doi.org/10.3390/biomedicines10030574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 2015;6:524–51. https://doi.org/10.1016/j.redox.2015.08.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lei XG, Zhu JH, Cheng WH, et al. Paradoxical roles of antioxidant enzymes: basic mechanisms and health implications. Physiol Rev. 2016;96:307–64. https://doi.org/10.1152/physrev.00010.2014.

    Article  CAS  PubMed  Google Scholar 

  91. De Bock M, Van Haver V, Vandenbroucke RE, et al. Into rather unexplored terrain-transcellular transport across the blood-brain barrier. Glia. 2016;64:1097–123. https://doi.org/10.1002/glia.22960.

    Article  PubMed  Google Scholar 

  92. Hu H, Huang H, Xia L, et al. Engineering vanadium carbide MXene as multienzyme mimetics for efficient in vivo ischemic stroke treatment. Chem Eng J. 2022;440:135810. https://doi.org/10.1016/j.cej.2022.135810.

    Article  CAS  Google Scholar 

  93. Feng L, Dou C, Xia Y, et al. Neutrophil-like cell-membrane-coated nanozyme therapy for ischemic brain damage and long-term neurological functional recovery. ACS Nano. 2021;15:2263–80. https://doi.org/10.1021/acsnano.0c07973.

    Article  CAS  PubMed  Google Scholar 

  94. Fabian RH, Derry PJ, Rea HC, et al. Efficacy of novel carbon nanoparticle antioxidant therapy in a severe model of reversible middle cerebral artery stroke in acutely hyperglycemic rats. Front Neurol. 2018;9:199. https://doi.org/10.3389/fneur.2018.00199.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Jiang Y, Kang Y, Liu J, et al. Nanomaterials alleviating redox stress in neurological diseases: mechanisms and applications. J Nanobiotechnology. 2022;20(265):1–27. https://doi.org/10.1186/s12951-022-01434-5.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Liu Y, Ai K, Ji X, et al. Comprehensive insights into the multi-antioxidative mechanisms of melanin nanoparticles and their application to protect brain from injury in ischemic stroke. J Am Chem Soc. 2017;139:856–62. https://doi.org/10.1021/jacs.6b11013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mittal M, Siddiqui MR, Tran K, et al. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20:1126–67. https://doi.org/10.1089/ars.2012.5149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22:391–7. https://doi.org/10.1016/s0166-2236(99)01401-0.

    Article  CAS  PubMed  Google Scholar 

  99. Liu Y, Wang X, Li X, et al. A co-doped Fe3O4 nanozyme shows enhanced reactive oxygen and nitrogen species scavenging activity and ameliorates the deleterious effects of ischemic stroke. ACS Appl Mater Interfaces. 2021;13:46213–24. https://doi.org/10.1021/acsami.1c06449.

    Article  CAS  PubMed  Google Scholar 

  100. Zhang K, Tu M, Gao W, et al. Hollow Prussian blue nanozymes drive neuroprotection against ischemic stroke via attenuating oxidative stress, counteracting inflammation, and suppressing cell apoptosis. Nano Lett. 2019;19:2812–23. https://doi.org/10.1021/acs.nanolett.8b04729.

    Article  CAS  PubMed  Google Scholar 

  101. Tian R, Ma H, Ye W, et al. Se-containing MOF coated dual-Fe-atom nanozymes with multi-enzyme cascade activities protect against cerebral ischemic reperfusion injury. Adv Funct Mater. 2022;32:2204025. https://doi.org/10.1002/adfm.202204025.

    Article  CAS  Google Scholar 

  102. Xi J, Zhang R, Wang L, et al. A nanozyme-based artificial peroxisome ameliorates hyperuricemia and ischemic stroke. Adv Funct Mater. 2020;31:2007130. https://doi.org/10.1002/adfm.202007130.

    Article  CAS  Google Scholar 

  103. Lin AM, Fang SF, Lin SZ, et al. Local carboxyfullerene protects cortical infarction in rat brain. Neurosci Res. 2000;43(4):317–21. https://doi.org/10.1016/s0168-0102(02)00056-1.

    Article  Google Scholar 

  104. Zhao Q, Du W, Zhou L, et al. Transferrin-enabled blood-brain barrier crossing manganese-based nanozyme for rebalancing the reactive oxygen species level in ischemic stroke. Pharmaceutics. 2022;14:1122. https://doi.org/10.3390/pharmaceutics14061122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jiang Y, Brynskikh AM, S-Manickam D, et al. Sod1 nanozyme salvages ischemic brain by locally protecting cerebral vasculature. J Control Release. 2015;213:36–44. https://doi.org/10.1016/j.jconrel.2015.06.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Manickam DS, Brynskikh AM, Kopanic JL, et al. Well-defined cross-linked antioxidant nanozymes for treatment of ischemic brain injury. J Control Release. 2012;162:636–45. https://doi.org/10.1016/j.jconrel.2012.07.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang Z, Zhang R, Yan X, et al. Structure and activity of nanozymes: Inspirations for de novo design of nanozymes. Mater Today. 2020;41:81–119. https://doi.org/10.1016/j.mattod.2020.08.020.

    Article  CAS  Google Scholar 

  108. Zhang Z, Liu B, Liu J. Molecular imprinting for substrate selectivity and enhanced activity of enzyme mimics. Small. 2017;13. https://doi.org/10.1002/smll.201602730.

  109. Naveen Prasad S, Bansal V, Ramanathan R. Detection of pesticides using nanozymes: trends, challenges and outlook. Trends Analyt Chem. 2021;144:116429. https://doi.org/10.1016/j.trac.2021.116429.

    Article  CAS  Google Scholar 

  110. Khoshfetrat SM, Dorraji PS, Fotouhi L, et al. Enhanced electrochemiluminescence biosensing of gene-specific methylation in thyroid cancer patients’ plasma-based integrated graphitic carbon nitride-encapsulated metal-organic framework nanozyme optimized by central composite design. Sens Actuators B Chem. 2022;364:131895. https://doi.org/10.1016/j.snb.2022.131895.

    Article  CAS  Google Scholar 

  111. Khoshfetrat SM, Seyed Dorraji P, Shayan M, et al. Smartphone-based electrochemiluminescence for visual simultaneous detection of RASSF1A and SLC5A8 tumor suppressor gene methylation in thyroid cancer patient plasma. Anal Chem. 2022;94(22):8005–13. https://doi.org/10.1021/acs.analchem.2c01132.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants of National Natural Science Foundation of China (No.81870938), Natural Science Foundation of Shandong Province (No.ZR2019ZD32, ZR2021QH160, ZR2022QH120, ZR2021MH025), Fund of Taishan Scholar Project, Fund of Teaching Promotion Programme, and Fund of Academic Promotion Program of Shandong First Medical University & Shandong Academy of Medical Sciences (No.2019QL016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingyi Sun, Ying Wang or Baoliang Sun.

Ethics declarations

Conflict of Interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Q., Wang, C., Liu, J. et al. Application of Nanozymes and its Progress in the Treatment of Ischemic Stroke. Transl. Stroke Res. (2023). https://doi.org/10.1007/s12975-023-01182-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12975-023-01182-0

Keywords

Navigation