Skip to main content

Advertisement

Log in

Ifenprodil Improves Long-Term Neurologic Deficits Through Antagonizing Glutamate-Induced Excitotoxicity After Experimental Subarachnoid Hemorrhage

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Excessive glutamate leading to excitotoxicity worsens brain damage after SAH and contributes to long-term neurological deficits. The drug ifenprodil is a non-competitive antagonist of GluN1-GluN2B N-methyl-d-aspartate (NMDA) receptor, which mediates excitotoxic damage in vitro and in vivo. Here, we show that cerebrospinal fluid (CSF) glutamate level within 48 h was significantly elevated in aSAH patients who later developed poor outcome. In rat SAH model, ifenprodil can improve long-term sensorimotor and spatial learning deficits. Ifenprodil attenuates experimental SAH-induced neuronal death of basal cortex and hippocampal CA1 area, cellular and mitochondrial Ca2+ overload of basal cortex, blood-brain barrier (BBB) damage, and cerebral edema of early brain injury. Using in vitro models, ifenprodil declines the high-concentration glutamate-mediated intracellular Ca2+ increase and cell apoptosis in primary cortical neurons, reduces the high-concentration glutamate-elevated endothelial permeability in human brain microvascular endothelial cell (HBMEC). Altogether, our results suggest ifenprodil improves long-term neurologic deficits through antagonizing glutamate-induced excitotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rinkel GJ, Algra A. Long-term outcomes of patients with aneurysmal subarachnoid haemorrhage. Lancet Neurol. 2011;10(4):349–56. https://doi.org/10.1016/S1474-4422(11)70017-5.

    Article  PubMed  Google Scholar 

  2. Fujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH. Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res. 2013;4(4):432–46. https://doi.org/10.1007/s12975-013-0257-2.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen S, Feng H, Sherchan P, Klebe D, Zhao G, Sun X, et al. Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol. 2014;115:64–91. https://doi.org/10.1016/j.pneurobio.2013.09.002.

    Article  PubMed  Google Scholar 

  4. Macdonald RL. Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol. 2014;10(1):44–58. https://doi.org/10.1038/nrneurol.2013.246.

    Article  CAS  PubMed  Google Scholar 

  5. Unterberg AW, Sakowitz OW, Sarrafzadeh AS, Benndorf G, Lanksch WR. Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2001;94(5):740–9. https://doi.org/10.3171/jns.2001.94.5.0740.

    Article  CAS  PubMed  Google Scholar 

  6. Jung CS, Lange B, Zimmermann M, Seifert V. CSF and serum biomarkers focusing on cerebral vasospasm and ischemia after subarachnoid hemorrhage. Stroke Res Treat. 2013;2013:560305–7. https://doi.org/10.1155/2013/560305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang HB, Wu QJ, Zhao SJ, Hou YJ, Li HX, Yang MF, et al. Early high cerebrospinal fluid glutamate: a potential predictor for delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. ACS Omega. 2020;5(25):15385–9. https://doi.org/10.1021/acsomega.0c01472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol. 2010;50:295–322. https://doi.org/10.1146/annurev.pharmtox.011008.145533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol. 2014;115:157–88. https://doi.org/10.1016/j.pneurobio.2013.11.006.

    Article  CAS  PubMed  Google Scholar 

  10. Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L, Lai TW, et al. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci. 2007;27(11):2846–57. https://doi.org/10.1523/JNEUROSCI.0116-07.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hashimoto K, Sasaki T, Kishimoto A. Old drug ifenprodil, new hope for PTSD with a history of childhood abuse. Psychopharmacology. 2013;227(2):375–6. https://doi.org/10.1007/s00213-013-3092-y.

    Article  CAS  PubMed  Google Scholar 

  12. Tajima N, Karakas E, Grant T, Simorowski N, Diaz-Avalos R, Grigorieff N, et al. Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature. 2016;534(7605):63–8. https://doi.org/10.1038/nature17679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang Z, Liu J, Fan C, Mao L, Xie R, Wang S, et al. The GluN1/GluN2B NMDA receptor and metabotropic glutamate receptor 1 negative allosteric modulator has enhanced neuroprotection in a rat subarachnoid hemorrhage model. Exp Neurol. 2018;301(Pt A):13–25. https://doi.org/10.1016/j.expneurol.2017.12.005.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang C, Jiang M, Wang WQ, Zhao SJ, Yin YX, Mi QJ, et al. Selective mGluR1 negative allosteric modulator reduces blood-brain barrier permeability and cerebral edema after experimental subarachnoid hemorrhage. Transl Stroke Res. 2020;11(4):799–811. https://doi.org/10.1007/s12975-019-00758-z.

    Article  CAS  PubMed  Google Scholar 

  15. Zhu Q, Enkhjargal B, Huang L, Zhang T, Sun C, Xie Z, et al. Aggf1 attenuates neuroinflammation and BBB disruption via PI3K/Akt/NF-kappaB pathway after subarachnoid hemorrhage in rats. J Neuroinflammation. 2018;15(1):178. https://doi.org/10.1186/s12974-018-1211-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xie Z, Enkhjargal B, Wu L, Zhou K, Sun C, Hu X, et al. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology. 2018;128:142–51. https://doi.org/10.1016/j.neuropharm.2017.09.040.

    Article  CAS  PubMed  Google Scholar 

  17. Chang CZ, Wu SC, Kwan AL, Lin CL. Preconditioning with pitavastatin, an HMG-CoA reductase inhibitor, attenuates C-Jun N-terminal kinase activation in experimental subarachnoid hemorrhage-induced apoptosis. Acta Neurochir. 2015;157(6):1031–41; discussion 41. https://doi.org/10.1007/s00701-015-2399-3.

    Article  PubMed  Google Scholar 

  18. Li T, Liu H, Xue H, Zhang J, Han X, Yan S, et al. Neuroprotective effects of hydrogen sulfide against early brain injury and secondary cognitive deficits following subarachnoid hemorrhage. Brain Pathol. 2017;27(1):51–63. https://doi.org/10.1111/bpa.12361.

    Article  CAS  PubMed  Google Scholar 

  19. Wang W, Han P, Xie R, Yang M, Zhang C, Mi Q, et al. TAT-mGluR1 attenuation of neuronal apoptosis through prevention of MGluR1alpha truncation after experimental subarachnoid hemorrhage. ACS Chem Neurosci. 2019;10(1):746–56. https://doi.org/10.1021/acschemneuro.8b00531.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Wu Q, Lu Y, Wan J, Dai H, Zhou X, et al. Cerebroprotection by salvianolic acid B after experimental subarachnoid hemorrhage occurs via Nrf2- and SIRT1-dependent pathways. Free Radic Biol Med. 2018;124:504–16. https://doi.org/10.1016/j.freeradbiomed.2018.06.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yan H, Zhang D, Hao S, Li K, Hang CH. Role of mitochondrial calcium uniporter in early brain injury after experimental subarachnoid hemorrhage. Mol Neurobiol. 2015;52(3):1637–47. https://doi.org/10.1007/s12035-014-8942-z.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang ZY, Jiang M, Fang J, Yang MF, Zhang S, Yin YX, et al. Enhanced therapeutic potential of nano-curcumin against subarachnoid hemorrhage-induced blood-brain barrier disruption through inhibition of inflammatory response and oxidative stress. Mol Neurobiol. 2017;54(1):1–14. https://doi.org/10.1007/s12035-015-9635-y.

    Article  CAS  PubMed  Google Scholar 

  23. Sokol B, Urbaniak B, Wasik N, Plewa S, Klupczynska A, Jankowski R, et al. Amino acids in cerebrospinal fluid of patients with aneurysmal subarachnoid haemorrhage: an observational study. Front Neurol. 2017;8:438. https://doi.org/10.3389/fneur.2017.00438.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li YC, Wang R, Xu MM, Jing XR, A JY, Sun RB, et al. Aneurysmal subarachnoid hemorrhage onset alters pyruvate metabolism in poor-grade patients and clinical outcome depends on more: a cerebrospinal fluid metabolomic study. ACS Chem Neurosci. 2019;10(3):1660–7. https://doi.org/10.1021/acschemneuro.8b00581.

    Article  CAS  PubMed  Google Scholar 

  25. Sarrafzadeh AS, Sakowitz OW, Kiening KL, Benndorf G, Lanksch WR, Unterberg AW. Bedside microdialysis: a tool to monitor cerebral metabolism in subarachnoid hemorrhage patients? Crit Care Med. 2002;30(5):1062–70. https://doi.org/10.1097/00003246-200205000-00018.

    Article  PubMed  Google Scholar 

  26. Wu CT, Wen LL, Wong CS, Tsai SY, Chan SM, Yeh CC, et al. Temporal changes in glutamate, glutamate transporters, basilar arteries wall thickness, and neuronal variability in an experimental rat model of subarachnoid hemorrhage. Anesth Analg. 2011;112(3):666–73. https://doi.org/10.1213/ANE.0b013e318207c51f.

    Article  CAS  PubMed  Google Scholar 

  27. Feng D, Wang W, Dong Y, Wu L, Huang J, Ma Y, et al. Ceftriaxone alleviates early brain injury after subarachnoid hemorrhage by increasing excitatory amino acid transporter 2 expression via the PI3K/Akt/NF-kappaB signaling pathway. Neuroscience. 2014;268:21–32. https://doi.org/10.1016/j.neuroscience.2014.02.053.

    Article  CAS  PubMed  Google Scholar 

  28. Huang S, Cao J, Jiang M, Labesse G, Liu J, Pin JP, et al. Interdomain movements in metabotropic glutamate receptor activation. Proc Natl Acad Sci U S A. 2011;108(37):15480–5. https://doi.org/10.1073/pnas.1107775108.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian MM, et al. DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell. 2010;140(2):222–34. https://doi.org/10.1016/j.cell.2009.12.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baskaya MK, Rao AM, Donaldson D, Prasad MR, Dempsey RJ. Protective effects of ifenprodil on ischemic injury size, blood-brain barrier breakdown, and edema formation in focal cerebral ischemia. Neurosurgery. 1997;40(2):364–70; discussion 70-1. https://doi.org/10.1097/00006123-199702000-00026.

    Article  CAS  PubMed  Google Scholar 

  31. Huang Y, Shen W, Su J, Cheng B, Li D, Liu G, et al. Modulating the balance of synaptic and extrasynaptic NMDA receptors shows positive effects against amyloid-beta-induced neurotoxicity. J Alzheimers Dis. 2017;57(3):885–97. https://doi.org/10.3233/JAD-161186.

    Article  CAS  PubMed  Google Scholar 

  32. Nash JE, Fox SH, Henry B, Hill MP, Peggs D, McGuire S, et al. Antiparkinsonian actions of ifenprodil in the MPTP-lesioned marmoset model of Parkinson’s disease. Exp Neurol. 2000;165(1):136–42. https://doi.org/10.1006/exnr.2000.7444.

    Article  CAS  PubMed  Google Scholar 

  33. Prunell GF, Mathiesen T, Diemer NH, Svendgaard NA. Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery. 2003;52(1):165–75; discussion 75-6. https://doi.org/10.1097/00006123-200301000-00022.

    Article  PubMed  Google Scholar 

  34. Kooijman E, Nijboer CH, van Velthoven CT, Mol W, Dijkhuizen RM, Kesecioglu J, et al. Long-term functional consequences and ongoing cerebral inflammation after subarachnoid hemorrhage in the rat. PLoS One. 2014;9(6):e90584. https://doi.org/10.1371/journal.pone.0090584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang H, James ML, Venkatraman TN, Wilson LJ, Lyuboslavsky P, Myers SJ, et al. pH-sensitive NMDA inhibitors improve outcome in a murine model of SAH. Neurocrit Care. 2014;20(1):119–31. https://doi.org/10.1007/s12028-013-9944-9.

    Article  CAS  PubMed  Google Scholar 

  36. Dempsey RJ, Baskaya MK, Dogan A. Attenuation of brain edema, blood-brain barrier breakdown, and injury volume by ifenprodil, a polyamine-site N-methyl-D-aspartate receptor antagonist, after experimental traumatic brain injury in rats. Neurosurgery. 2000;47(2):399–404; discussion -6. https://doi.org/10.1097/00006123-200008000-00024.

    Article  CAS  PubMed  Google Scholar 

  37. Papadopoulos MC, Verkman AS. Aquaporin water channels in the nervous system. Nat Rev Neurosci. 2013;14(4):265–77. https://doi.org/10.1038/nrn3468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tait MJ, Saadoun S, Bell BA, Verkman AS, Papadopoulos MC. Increased brain edema in aqp4-null mice in an experimental model of subarachnoid hemorrhage. Neuroscience. 2010;167(1):60–7. https://doi.org/10.1016/j.neuroscience.2010.01.053.

    Article  CAS  PubMed  Google Scholar 

  39. Cao S, Zhu P, Yu X, Chen J, Li J, Yan F, et al. Hydrogen sulfide attenuates brain edema in early brain injury after subarachnoid hemorrhage in rats: possible involvement of MMP-9 induced blood-brain barrier disruption and AQP4 expression. Neurosci Lett. 2016;621:88–97. https://doi.org/10.1016/j.neulet.2016.04.018.

    Article  CAS  PubMed  Google Scholar 

  40. Qi W, Cao D, Li Y, Peng A, Wang Y, Gao K, et al. Atorvastatin ameliorates early brain injury through inhibition of apoptosis and ER stress in a rat model of subarachnoid hemorrhage. Biosci Rep. 2018;38(3). https://doi.org/10.1042/BSR20171035.

  41. Xiao F, Pardue S, Arnold TC, Monroe J, Alexander JS, Carden DL, et al. Ifenprodil treatment is associated with a down-regulation of brain aquaporin 4 following cardiac arrest in rats. Acta Neurochir Suppl. 2005;95:415–9. https://doi.org/10.1007/3-211-32318-x_85.

    Article  CAS  PubMed  Google Scholar 

  42. Hayman EG, Wessell A, Gerzanich V, Sheth KN, Simard JM. Mechanisms of global cerebral edema formation in aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2017;26(2):301–10. https://doi.org/10.1007/s12028-016-0354-7.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Vazana U, Veksler R, Pell GS, Prager O, Fassler M, Chassidim Y, et al. Glutamate-mediated blood-brain barrier opening: implications for neuroprotection and drug delivery. J Neurosci. 2016;36(29):7727–39. https://doi.org/10.1523/JNEUROSCI.0587-16.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Collard CD, Park KA, Montalto MC, Alapati S, Buras JA, Stahl GL, et al. Neutrophil-derived glutamate regulates vascular endothelial barrier function. J Biol Chem. 2002;277(17):14801–11. https://doi.org/10.1074/jbc.M110557200.

    Article  CAS  PubMed  Google Scholar 

  45. Sharp CD, Hines I, Houghton J, Warren A, Jackson TH, Jawahar A, et al. Glutamate causes a loss in human cerebral endothelial barrier integrity through activation of NMDA receptor. Am J Physiol Heart Circ Physiol. 2003;285(6):H2592–8. https://doi.org/10.1152/ajpheart.00520.2003.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (82071303, 81870938), Natural Science Foundation of Shandong province (ZR2019ZD32) and Inner Mongolia province (2020MS08167), Youth Innovation Team of Shandong Universities (2019KJK001), Taishan Scholar Project, Science Technology Development Program (2019Z3009-9) of Baotou city, and Academic Promotion Program of Shandong First Medical University (2019QL016, 2019PT007).

Author information

Authors and Affiliations

Authors

Contributions

BS and ZZ designed experiments. JS, SZ, HW, YH, QM, MY, HY, and QN performed experiments. ZZ and BS analyzed the results. ZZ wrote the manuscript with contribution from BS. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Bao-liang Sun or Zong-yong Zhang.

Ethics declarations

Ethics Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

Ifenprodil (Ifen) reduced high-concentration glutamate (glu)-induced cell damage in rat primary cortical neurons. a Concentration-response curve showing Ca2+ release induced by glutamate alone or together with ifenprodil (100 μM) in cortical neurons. b Effect of ifenprodil (100 μM) on glutamate (50 or 100 μM)-induced Ca2+ release in cortical neurons. c, d Neurons were treated with glutamate (0, 10, 30, 50, 100 or 300 μM) or co-incubation with ifenprodil (100 μM) for 24 h and subsequent determination of the cell viability by CCK8 assay. e Neurons were treated with the glutamate (50 or 100 μM) or co-incubation with ifenprodil (100 μM) for 24 h, then apoptotic neurons were detected by TUNEL assay. Representative photos of six groups were captured from fluorescence microscope (200 ×). Data are mean ± SD. *P < 0.05 vs control, #P < 0.05 vs glu; ns denotes no significant; n = 6. (PNG 6380 kb)

High Resolution Image (TIFF 3784 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Jy., Zhao, Sj., Wang, Hb. et al. Ifenprodil Improves Long-Term Neurologic Deficits Through Antagonizing Glutamate-Induced Excitotoxicity After Experimental Subarachnoid Hemorrhage. Transl. Stroke Res. 12, 1067–1080 (2021). https://doi.org/10.1007/s12975-021-00906-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-021-00906-4

Keywords

Navigation