Skip to main content

Advertisement

Log in

The Involvement of Canonical Wnt Signaling in Memory Impairment Induced by Chronic Cerebral Hypoperfusion in Mice

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Chronic cerebral hypoperfusion (CCH) has been proposed to contribute to the progression of memory loss, which is the main symptom of vascular cognitive impairment (VCI). Accumulating evidence indicates that underlying pathophysiology, such as neurodegeneration, may lead to memory loss. However, the underlying molecular basis of memory loss in CCH remains unclear. Here, we investigated the roles of canonical Wnt signaling, which modulates hippocampal function, in a CCH model. CCH was induced by unilateral common carotid artery occlusion (UCCAO). Mice were randomly divided into a sham-operated group or one of three UCCAO groups with different endpoints (1.5, 2.5, and 3.5 months) after UCCAO. Memory function and hippocampal levels of Wnt-related proteins were measured. A Wnt activator, lithium, was administered intraperitoneally to assess memory improvements. In the groups examined 2.5 and 3.5 months after UCCAO, impaired object recognition memory was accompanied by inhibition of Wnt signaling and decreased expression of synaptic/neural activity-related proteins. Recognition memory and Wnt signaling were significantly positive correlated. Moreover, activation of Wnt signaling with lithium significantly attenuated memory loss and recovered synaptic/neural marker expression after UCCAO. Our results suggest that CCH may affect synaptic plasticity via dysregulation of signaling pathways, including canonical Wnt signaling, which could be partly involved in memory loss. As Wnt activator administration alleviated the effects of CCH on memory loss, modulation of Wnt signaling may be a promising therapeutic strategy for VCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

αCAMKII:

α-Calcium-calmodulin-dependent kinase II

CA:

Cornus ammonis

CCH:

Chronic cerebral hypoperfusion

DG:

Dentate gyrus

DKK-1:

Dickkopf-1

GLUT:

Glucose transporter

GSK3β:

Glycogen synthase kinase 3β

IEGs:

Immediately early genes

NOR:

Novel object recognition

PSD95:

Postsynaptic density-95

UCCAO:

Unilateral common carotid artery occlusion

VCI:

Vascular cognitive impairment

References

  1. Van Der Flier WM, Skoog I, Schneider JA, Pantoni L, Mok V, Chen CL, et al. Vascular cognitive impairment. Nat Rev Dis Primers. 2018;4:18003.

    Article  PubMed  Google Scholar 

  2. Zhao Y, Gu J-H, Dai C-L, Liu Q, Iqbal K, Liu F, et al. Chronic cerebral hypoperfusion causes decrease of O-GlcNAcylation, hyperphosphorylation of tau and behavioral deficits in mice. Front Aging Neurosci. 2014;6:10.

    PubMed  PubMed Central  Google Scholar 

  3. Zuloaga KL, Zhang W, Yeiser LA, Stewart B, Kukino A, Nie X, et al. Neurobehavioral and imaging correlates of hippocampal atrophy in a mouse model of vascular cognitive impairment. Transl Stroke Res. 2015;6(5):390–8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bacigaluppi M, Comi G, Hermann DM. Animal models of ischemic stroke. Part two: modeling cerebral ischemia. Open Neurol J. 2010;4:34.

    PubMed  PubMed Central  Google Scholar 

  5. Zhao Y, Gong C-X. From chronic cerebral hypoperfusion to Alzheimer-like brain pathology and neurodegeneration. Cell Mol Neurobiol. 2015;35(1):101–10.

    Article  CAS  PubMed  Google Scholar 

  6. Liu J, Sun J, Wang F, Yu X, Ling Z, Li H, et al. Neuroprotective effects of Clostridium butyricum against vascular dementia in mice via metabolic butyrate. Biomed Res Int. 2015;2015.

  7. Korczyn AD, Brainin M, Guekht A. Neuroprotection in ischemic stroke: What does the future hold? Taylor & Francis; 2015.

  8. Urushihata T, Takuwa H, Seki C, Tachibana Y, Takahashi M, Kershaw J, et al. Water diffusion in the brain of chronic hypoperfusion model mice: A study considering the effect of blood flow. Magn Reson Med Sci. 2018;17(4):318–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nishino A, Tajima Y, Takuwa H, Masamoto K, Taniguchi J, Wakizaka H, et al. Long-term effects of cerebral hypoperfusion on neural density and function using misery perfusion animal model. Sci Rep. 2016;6:25072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guo H, Itoh Y, Toriumi H, Yamada S, Tomita Y, Hoshino H, et al. Capillary remodeling and collateral growth without angiogenesis after unilateral common carotid artery occlusion in mice. Microcirculation. 2011;18(3):221–7.

    Article  PubMed  Google Scholar 

  11. Ma J, Zhang J, Hou WW, Wu XH, Liao RJ, Chen Y, et al. Early treatment of minocycline alleviates white matter and cognitive impairments after chronic cerebral hypoperfusion. Sci Rep. 2015;5:12079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yoshizaki K, Adachi K, Kataoka S, Watanabe A, Tabira T, Takahashi K, et al. Chronic cerebral hypoperfusion induced by right unilateral common carotid artery occlusion causes delayed white matter lesions and cognitive impairment in adult mice. Exp Neurol. 2008;210(2):585–91.

    Article  PubMed  Google Scholar 

  13. Al-Qazzaz NK, Ali SH, Ahmad SA, Islam S, Mohamad K. Cognitive impairment and memory dysfunction after a stroke diagnosis: A post-stroke memory assessment. Neuropsychiatr Dis Treat. 2014;10:1677.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Finley PR, Warner MD, Peabody CA. Clinical relevance of drug interactions with lithium. Clin Pharmacokinet. 1995;29(3):172–91.

    Article  CAS  PubMed  Google Scholar 

  15. Ciani L, Salinas PC. Signalling in neural development: WNTs in the vertebrate nervous system: From patterning to neuronal connectivity. Nat Rev Neurosci. 2005;6(5):351.

    Article  CAS  PubMed  Google Scholar 

  16. Hall AC, Lucas FR, Salinas PC. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell. 2000;100(5):525–35.

    Article  CAS  PubMed  Google Scholar 

  17. Fortress AM, Schram SL, Tuscher JJ, Frick KM. Canonical Wnt signaling is necessary for object recognition memory consolidation. J Neurosci. 2013;33(31):12619–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cappuccio I, Calderone A, Busceti CL, Biagioni F, Pontarelli F, Bruno V, et al. Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is required for the development of ischemic neuronal death. J Neurosci. 2005;25(10):2647–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shruster A, Ben-Zur T, Melamed E, Offen D. Wnt signaling enhances neurogenesis and improves neurological function after focal ischemic injury. PLoS One. 2012;7(7):e40843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wei ZZ, Zhang JY, Taylor TM, Gu X, Zhao Y, Wei L. Neuroprotective and regenerative roles of intranasal Wnt-3a administration after focal ischemic stroke in mice. J Cerebr Blood F Met. 2018;38(3):404–21.

    Article  CAS  Google Scholar 

  21. Wexler E, Geschwind D, Palmer T. Lithium regulates adult hippocampal progenitor development through canonical Wnt pathway activation. Mol Psychiatry. 2008;13(3):285.

    Article  CAS  PubMed  Google Scholar 

  22. Toledo E, Inestrosa N. Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1ΔE9 mouse model of Alzheimer’s disease. Mol Psychiatry. 2010;15(3):272.

    Article  CAS  PubMed  Google Scholar 

  23. Wood AJ, Goodwin GM, Souza RD, Green AR. The pharmacokinetic profile of lithium in rat and mouse; an important factor in psychopharmacological investigation of the drug. Neuropharmacology. 1986;25(11):1285–8.

    Article  CAS  PubMed  Google Scholar 

  24. Shukla V, Fuchs P, Liu A, Cohan CH, Dong C, Wright CB, et al. Recurrent hypoglycemia exacerbates cerebral ischemic damage in diabetic rats via enhanced post-ischemic mitochondrial dysfunction. Transl Stroke Res. 2019;10(1):78–90.

    Article  CAS  PubMed  Google Scholar 

  25. Zhu S, Henninger K, McGrath BC, Cavener DR. PERK regulates working memory and protein synthesis-dependent memory flexibility. PLoS One. 2016;11(9):e0162766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kim M-S, Choi B-R, Lee YW, Kim D-H, Han YS, Jeon WK, et al. Chronic cerebral hypoperfusion induces alterations of matrix metalloproteinase-9 and angiopoietin-2 levels in the rat hippocampus. Exp Neurobiol. 2018;27(4):299–308.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kim M-S, Lee DY, Lee J, Kim HW, Sung SH, Han J-S, et al. Terminalia chebula extract prevents scopolamine-induced amnesia via cholinergic modulation and anti-oxidative effects in mice. BMC Complement Altern Med. 2018;18(1):136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kim M-S, Bang JH, Lee J, Han J-S, Baik TG, Jeon WK. Ginkgo biloba L. extract protects against chronic cerebral hypoperfusion by modulating neuroinflammation and the cholinergic system. Phytomedicine. 2016;23(12):1356–64.

    Article  CAS  PubMed  Google Scholar 

  29. Huang J, Guo X, Li W, Zhang H. Activation of Wnt/β-catenin signalling via GSK3 inhibitors direct differentiation of human adipose stem cells into functional hepatocytes. Sci Rep. 2017;7:40716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oliva CA, Vargas JY, Inestrosa NC. Wnts in adult brain: from synaptic plasticity to cognitive deficiencies. Front Cell Neurosci. 2013;7:224.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Han P, Ivanovski S, Crawford R, Xiao Y. Activation of the canonical Wnt signaling pathway induces cementum regeneration. J Bone Miner Res. 2015;30(7):1160–74.

    Article  CAS  PubMed  Google Scholar 

  32. Inestrosa NC, Montecinos-Oliva C, Fuenzalida M. Wnt signaling: Role in Alzheimer disease and schizophrenia. J NeuroImmune Pharmacol. 2012;7(4):788–807.

    Article  PubMed  Google Scholar 

  33. Pimentel-Coelho PM, Michaud J-P, Rivest S. Effects of mild chronic cerebral hypoperfusion and early amyloid pathology on spatial learning and the cellular innate immune response in mice. Neurobiol Aging. 2013;34(3):679–93.

    Article  CAS  PubMed  Google Scholar 

  34. Vannucci SJ, Reinhart R, Maher F, Bondy CA, Lee W-H, Vannucci RC, et al. Alterations in GLUT1 and GLUT3 glucose transporter gene expression following unilateral hypoxia–ischemia in the immature rat brain. Dev Brain Res. 1998;107(2):255–64.

    Article  CAS  Google Scholar 

  35. Shah K, DeSilva S, Abbruscato T. The role of glucose transporters in brain disease: Diabetes and Alzheimer’s disease. Int J Mol Sci. 2012;13(10):12629–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li X, Lu F, Wang JZ, Gong CX. Concurrent alterations of O-GlcNAcylation and phosphorylation of tau in mouse brains during fasting. Eur J Neurosci. 2006;23(8):2078–86.

    Article  PubMed  Google Scholar 

  37. Elizalde N, Gil-Bea FJ, Ramirez MJ, Aisa B, Lasheras B, Del Rio J, et al. Long-lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: effect of antidepressant treatment. Psychopharmacology. 2008;199(1):1.

    Article  CAS  PubMed  Google Scholar 

  38. Antunes M, Biala G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process. 2012;13(2):93–110.

    Article  CAS  PubMed  Google Scholar 

  39. Plaschke K, Martin E, Bardenheuer H. Effect of propentofylline on hippocampal brain energy state and amyloid precursor protein concentration in a rat model of cerebral hypoperfusion. J Neural Transm. 1998;105(8-9):1065–77.

    Article  CAS  PubMed  Google Scholar 

  40. Cruciat C-M, Niehrs C. Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol. 2013;5(3):a015081.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. VanGuilder HD, Farley JA, Yan H, Van Kirk CA, Mitschelen M, Sonntag WE, et al. Hippocampal dysregulation of synaptic plasticity-associated proteins with age-related cognitive decline. Neurobiol Dis. 2011;43(1):201–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Taft CE, Turrigiano GG. PSD-95 promotes the stabilization of young synaptic contacts. Philos Trans R Soc Lond Ser B Biol Sci. 2013;369(1633):20130134.

    Article  CAS  Google Scholar 

  43. Park M, Kim C-H, Jo S, Kim EJ, Rhim H, Lee CJ, et al. Chronic stress alters spatial representation and bursting patterns of place cells in behaving mice. Sci Rep. 2015;5:16235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Barry DN, Coogan AN, Commins S. The time course of systems consolidation of spatial memory from recent to remote retention: A comparison of the immediate early genes Zif268, c-Fos and Arc. Neurobiol Learn Mem. 2016;128:46–55.

    Article  CAS  PubMed  Google Scholar 

  45. Clark PJ, Bhattacharya TK, Miller DS, Rhodes JS. Induction of c-Fos, Zif268, and Arc from acute bouts of voluntary wheel running in new and pre-existing adult mouse hippocampal granule neurons. Neuroscience. 2011;184:16–27.

    Article  CAS  PubMed  Google Scholar 

  46. Barbosa FF, Santos JR, Meurer YSR, Macêdo PT, Ferreira LMS, Pontes IMO, et al. Differential cortical c-Fos and Zif-268 expression after object and spatial memory processing in a standard or episodic-like object recognition task. Front Behav Neurosci. 2013;7:112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. T O'Brien J, Erkinjuntti T, Reisberg B, Roman G, Sawada T, Pantoni L, et al. Vascular cognitive impairment. Lancet Neurol. 2003;2(2):89–98.

  48. Bhat RV, Budd Haeberlein SL, Avila J. Glycogen synthase kinase 3: A drug target for CNS therapies. J Neurochem. 2004;89(6):1313–7.

    Article  CAS  PubMed  Google Scholar 

  49. Xu J, Culman J, Blume A, Brecht S, Gohlke P. Chronic treatment with a low dose of lithium protects the brain against ischemic injury by reducing apoptotic death. Stroke. 2003;34(5):1287–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by grants from the National Research Council of Science and Technology (NST) by the Korean government (MSIP) (CRC-15-04-KIST, G17290, G18230, K18850, and KSN1621850).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Kyung Jeon.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All experiments were approved by the institutional animal care and use committee of Korea Institute of Science and Technology (Permit number: 2017-103), in concordance with the NIH and ARRIVE guidelines.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, MS., Bang, J. & Jeon, W.K. The Involvement of Canonical Wnt Signaling in Memory Impairment Induced by Chronic Cerebral Hypoperfusion in Mice. Transl. Stroke Res. 11, 734–746 (2020). https://doi.org/10.1007/s12975-019-00748-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-019-00748-1

Keywords

Navigation