Skip to main content
Log in

Facile One-Step Synthesis of Nickel Sulphide Nanoparticles Decorated Poly (Acrylic Acid) Coated Multi-Walled Carbon Nanotube for Detection of Tenofovir in Human Urine

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Tenofovir (TNF), a nucleotide analogue of adenosine 5′-monophosphate, is the first-line treatment for chronic HIV/hepatitis B coinfection. There is a need to explore highly sensitive, rapid, and cost-effective quality control techniques to detect the drug. Nickel sulphide @ poly(acrylic acid) coated multi-walled carbon nanotubes (NiS@PAA-MWCNT) composite was synthesized using the one-step solvothermal method. The composite was characterized by UV-vis spectroscopy, Fourier transforms infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. Morphological analysis showed polydispersed NiS on the surface of the poly(acrylic acid) coated multi-walled carbon nanotube (MWCNT). Tenofovir was electrochemically detected in human urine by differential pulse voltammetry (DPV) using the NiS@PAA-MWCNT modified glassy carbon electrode. The linear range was found to be from 20 to 80 µM with a limit of detection of 5.83 × 10−12 M and 5.12 × 10−12 M in phosphate buffer and human urine, respectively. The practical applicability of the modified electrode was evaluated in human urine and in the presence of different interfering agents. The electrode demonstrated good reproducibility, selectivity, and sensitivity. Thus, NiS@PAA-MWCNT nanocomposite can be used in electrochemical sensors for quality control purposes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of Data and Material

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. K. Lacombe, J. Rockstroh, HIV and viral hepatitis coinfections: advances and challenges. Gut. 61, i47–i58 (2012)

    Article  CAS  Google Scholar 

  2. M. Simiele, C. Carcieri, A. De Nicolò, A. Ariaudo, M. Sciandra, A. Calcagno, S. Bonora, G. Di Perri, A. D’Avolio, A LC-MS method to quantify tenofovir urinary concentrations in treated patients. J. Pharm. Biomed. Anal. 114, 8–11 (2015)

    Article  CAS  Google Scholar 

  3. K. Tsuyuki, H.L. Surratt, M.A. Levi-Minzi, C.L. O’Grady, S.P. Kurtz, The demand for antiretroviral drugs in the illicit marketplace: implications for HIV disease management among vulnerable populations. AIDS. Behav. 19, 857–868 (2015)

    Article  Google Scholar 

  4. O.Y. Rodionova, A.L. Pomerantsev, NIR-based approach to counterfeit-drug detection. Trends. Anal. Chem. 29, 795–803 (2010)

    Article  CAS  Google Scholar 

  5. P.Y. Sacré, E. Deconinck, T. De Beer, P. Courselle, R. Vancauwenberghe, P. Chiap, J. Crommen, J.O. De Beer, Comparison and combination of spectroscopic techniques for the detection of counterfeit medicines. J. Pharm. Biomed. Anal. 53, 445–453 (2010)

    Article  Google Scholar 

  6. Y. Roggo, K. Degardin, P. Margot, Identification of pharmaceutical tablets by Raman spectroscopy and chemometrics. Talanta. 81, 988–995 (2010)

    Article  CAS  Google Scholar 

  7. S.O. Fakayode, G.A. Baker, D.K. Bwambok et al., Molecular (Raman, NIR, and FTIR) spectroscopy and multivariate analysis in consumable products analysis1. Appl. Spectrosc. Rev. 55, 647–723 (2020)

    Article  Google Scholar 

  8. E. Deconinck, P.Y. Sacré, D. Coomans, J. De Beer, Classification trees based on infrared spectroscopic data to discriminate between genuine and counterfeit medicines. J. Pharm. Biomed. Anal. 57, 68–75 (2012)

    Article  CAS  Google Scholar 

  9. R. Urapen, P. Masawat, Novel method for the determination of tetracycline antibiotics in bovine milk based on digital-image-based colorimetry. Int. Dairy. J. 44, 1–5 (2015)

    Article  CAS  Google Scholar 

  10. P. Lillsunde, Analytical techniques for drug detection in oral fluid. Ther. Drug. Monit. 30, 181–187 (2008)

    Article  CAS  Google Scholar 

  11. R.W. Sparidans, K.M.L. Crommentuyn, J.H.M. Schellens, J.H. Beijnen, Liquid chromatographic assay for the antiviral nucleotide analogue tenofovir in plasma using derivatization with chloroacetaldehyde. J. Chromatogr. B. Anal. Technol. Biomed. Life. Sci. 791, 227–233 (2003)

    Article  CAS  Google Scholar 

  12. Biological RK-IJ of P, 2019 U, A review on analytical methods for estimation of tenofovir disoproxil fumarate and emtricitabine in bulk and pharmaceutical (Ijpba.in, 2019)

  13. M. Gandhi, P. Bacchetti, W.C. Rodrigues et al., Development and validation of an immunoassay for tenofovir in urine as a real-time metric of antiretroviral adherence. EClinicalMedicine. 2–3, 22–28 (2018)

    Article  Google Scholar 

  14. H. Kou, X. Du, Y. Li, Q. Fu, Z. Zhu, T. Li, Quantification of tenofovir in human plasma by solid-phase extraction and high-performance liquid chromatography coupled with UV detection. Ther. Drug. Monit. 34, 593–598 (2012)

    Article  CAS  Google Scholar 

  15. M. Thevis, D.A. Volmer, Recent instrumental progress in mass spectrometry: advancing resolution, accuracy, and speed of drug detection. Drug. Test. Anal. 4, 242–245 (2012)

    Article  CAS  Google Scholar 

  16. O.A. Farghaly, R.S. Abdel Hameed, A.A.H. Abu-Nawwas, Analytical application using modern electrochemical techniques. Int. J. Electrochem. Sci. 9, 3287–3318 (2014)

    Google Scholar 

  17. K. Morawska, T. Popławski, W. Ciesielski, S. Smarzewska, Electrochemical and spectroscopic studies of the interaction of antiviral drug tenofovir with single and double stranded DNA. Bioelectrochemistry. 123, 227–232 (2018)

    Article  CAS  Google Scholar 

  18. C.R.R. De, G. Ozcelikay, B. Dogan-topal, S.A. Ozkan, Electrochemical characteristics of tenofovir and its determination in dosage. Rev. Roum. Chim. 62, 569–578 (2017)

    Google Scholar 

  19. L. Shaw, L. Dennany, Applications of electrochemical sensors: forensic drug analysis. Curr. Opin. Electrochem. 3, 23–28 (2017)

    Article  CAS  Google Scholar 

  20. Z. Nate, A.A.S. Gill, R. Chauhan, R. Karpoormath, Polyaniline-cobalt oxide nanofibers for simultaneous electrochemical determination of antimalarial drugs: primaquine and proguanil. Microchem. J. 160, 105709 (2021)

    Article  CAS  Google Scholar 

  21. V.N. Palakollu, T.E. Chiwunze, A.A.S. Gill, N. Thapliyal, S.M. Maru, R. Karpoormath, Electrochemical sensitive determination of isoprenaline at β-cyclodextrin functionalized graphene oxide and electrochemically generated acid yellow 9 polymer modified electrode. J. Mol. Liq. 248, 953–962 (2017)

    Article  CAS  Google Scholar 

  22. Z. Guo, M.V. Reddy, B.M. Goh, A.K.P. San, Q. Bao, K.P. Loh, Electrochemical performance of graphene and copper oxide composites synthesized from a metal-organic framework (Cu-MOF). RSC. Adv. 3, 19051–19056 (2013)

    Article  CAS  Google Scholar 

  23. A.A. Ponce, K.J. Klabunde, Chemical and catalytic activity of copper nanoparticles prepared via metal vapor synthesis. J. Mol. Catal. A. Chem. 225, 1–6 (2005)

    Article  CAS  Google Scholar 

  24. F.A. Khan, Applications of nanomaterials in human health. Appl. Nanomater. Hum. Heal. (2020). https://doi.org/10.1007/978-981-15-4802-4

    Article  Google Scholar 

  25. M. Arivazhagan, A. Shankar, G. Maduraiveeran, Hollow sphere nickel sulfide nanostructures–based enzyme mimic electrochemical sensor platform for lactic acid in human urine. Microchim. Acta. (2020). https://doi.org/10.1007/s00604-020-04431-3

    Article  Google Scholar 

  26. K. Krishnamoorthy, G.K. Veerasubramani, S.J. Kim, Hydrothermal synthesis, characterization and electrochemical properties of cobalt sulfide nanoparticles. Mater. Sci. Semicond. Process. 40, 781–786 (2015)

    Article  CAS  Google Scholar 

  27. S. Kim, S.H. Lee, M. Cho, Y. Lee, Solvent-assisted morphology confinement of a nickel sulfide nanostructure and its application for non-enzymatic glucose sensor. Biosens. Bioelectron. 85, 587–595 (2016)

    Article  CAS  Google Scholar 

  28. Y. Wang, J. Zhao, T. Yang, Y. Zhang, D. Tao, Y. Hasebe, Z. Zhang, Electrochemical evaluation of sulfide mineral modified glassy carbon electrode as novel mediated glucose biosensor. J. Electroanal. Chem. 894, 115357 (2021)

    Article  CAS  Google Scholar 

  29. C.G. Hu, W.L. Wang, S.X. Wang, W. Zhu, Y. Li, Investigation on electrochemical properties of carbon nanotubes. Diam. Relat. Mater. 12, 1295–1299 (2003)

    Article  CAS  Google Scholar 

  30. M.D. Obradović, G.D. Vuković, S.I. Stevanović, V.V. Panić, P.S. Uskoković, A. Kowal, S.L. Gojković, A comparative study of the electrochemical properties of carbon nanotubes and carbon black. J. Electroanal. Chem. 634, 22–30 (2009)

    Article  Google Scholar 

  31. H. Chen, J. Li, D. Shao, X. Ren, X. Wang, Poly(acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co(II) removal from aqueous solution. Chem. Eng. J. 210, 475–481 (2012)

    Article  CAS  Google Scholar 

  32. J. Theerthagiri, R.A. Senthil, P. Arunachalam, K.A. Bhabu, A. Selvi, J. Madhavan, K. Murugan, A.K. Arof, Electrochemical deposition of carbon materials incorporated nickel sulfide composite as counter electrode for dye-sensitized solar cells. Ionics. 23, 1017–1025 (2017)

    Article  CAS  Google Scholar 

  33. A. Singh, A.J. Roberts, R.C.T. Slade, A. Chandra, High electrochemical performance in asymmetric supercapacitors using MWCNT/nickel sulfide composite and graphene nanoplatelets as electrodes. J. Mater. Chem. A. 2, 16723–16730 (2014)

    Article  CAS  Google Scholar 

  34. Y. Xiao, J. Wu, J. Lin, G. Yue, J. Lin, M. Huang, Y. Huang, Z. Lan, L. Fan, A high performance Pt-free counter electrode of nickel sulfide/multi-wall carbon nanotube/titanium used in dye-sensitized solar cells. J. Mater. Chem. A. 1, 13885–13889 (2013)

    Article  CAS  Google Scholar 

  35. S. Chen, G. Wu, Y. Liu, D. Long, Preparation of poly(acrylic acid) grafted multiwalled carbon nanotubes by a two-step irradiation technique. Macromolecules. 39, 330–334 (2006)

    Article  CAS  Google Scholar 

  36. A.A.S. Gill, S. Singh, N. Agrawal, Z. Nate, T.E. Chiwunze, N.B. Thapliyal, R. Chauhan, R. Karpoormath, A poly(acrylic acid)-modified copper-organic framework for electrochemical determination of vancomycin. Microchim. Acta. (2020). https://doi.org/10.1007/s00604-019-4015-3

    Article  Google Scholar 

  37. H.Y. Acar, S. Celebi, N.I. Serttunali, I. Lieberwirth, Development of highly stable and luminescent aqueous CdS quantum dots with the poly(acrylic acid)/mercaptoacetic acid binary coating system. J. Nanosci. Nanotechnol. 9, 2820–2829 (2009)

    Article  CAS  Google Scholar 

  38. X. Qi, Z. Wang, S. Ma, L. Wu, S. Yang, J. Xu, Complexation behavior of poly(acrylic acid) and lanthanide ions. Polymer. 55, 1183–1189 (2014)

    Article  CAS  Google Scholar 

  39. S. Matsumura, A.R. Hlil, C. Lepiller, J. Gaudet, D. Guay, Z. Shi, S. Holdcroft, A.S. Hay, Stability and utility of pyridyl disulfide functionality in RAFT and conventional radical polymerizations. J. Polym. Sci. A. Polym. Chem. 46, 7207–7224 (2008)

    Article  Google Scholar 

  40. Y. Zhang, X. Liu, Y. Wang, Z. Lou, W. Shan, Y. Xiong, Polyacrylic acid-functionalized graphene oxide for high-performance adsorption of gallium from aqueous solution. J. Colloid. Interface. Sci. 556, 102–110 (2019)

    Article  CAS  Google Scholar 

  41. Y. Hu, X. Jiang, Y. Ding, H. Ge, Y. Yuan, C. Yang, Synthesis and characterization of Chitosan-poly(acrylic acid) nanoparticles. Biomaterials. 23, 3193–3201 (2002)

    Article  CAS  Google Scholar 

  42. C.S. Thangwane, T. Xaba, M.J. Moloto, The formation of the mixed morphology of nickel sulfide nanoparticles derived from substituted benzimidazole dithiocarbamate nickel (Ii) complexes. Chalcogenide. Lett. 14, 407–417 (2017)

    CAS  Google Scholar 

  43. Y. Fazli, S.M. Pourmortazavi, I. Kohsari, M.S. Karimi, M. Tajdari, Synthesis, characterization and photocatalytic property of nickel sulfide nanoparticles. J. Mater. Sci. Mater. Electron. 27, 7192–7199 (2016)

    Article  CAS  Google Scholar 

  44. N.A. Batrisya Ismail, F. Abd-Wahab, W.W. Amani Wan Salim, Cyclic voltammetry and electrochemical impedance spectroscopy of partially reduced graphene oxide - PEDOT:PSS transducer for biochemical sensing (2018 IEEE-EMBS Conf. Biomed. Eng. Sci., IEEE, 2018) pp. 330–335

  45. E.P. Randviir, C.E. Banks, Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal. Methods. 5, 1098 (2013)

    Article  CAS  Google Scholar 

  46. B. Dogan-Topal, B. Bozal-Palabiyik, B. Uslu, S.A. Ozkan, Multi-walled carbon nanotube modified glassy carbon electrode as a voltammetric nanosensor for the sensitive determination of anti-viral drug valganciclovir in pharmaceuticals. Sensors. Actuators. B. Chem. 177, 841–847 (2013)

    Article  CAS  Google Scholar 

  47. M. Thiruppathi, N. Thiyagarajan, J.A. Ho, Applications of metals, metal oxides, and metal sulfides in electrochemical sensing and biosensing, in Environmental Chemistry for a Sustainable World. (Springer Nature, Switzerland, 2021), pp. 209–244

    Google Scholar 

  48. R. Chihava, D. Apath, M. Moyo, M. Shumba, V. Chitsa, P. Tshuma, One-pot synthesized nickel-cobalt sulfide-decorated graphene quantum dot composite for simultaneous electrochemical determination of antiretroviral drugs: lamivudine and tenofovir disoproxil fumarate. J. Sensors. 2020, 1–13 (2020)

    Article  Google Scholar 

  49. G. Ozcelikay, B. Dogan-Topal, S.A. Ozkan, An electrochemical sensor based on silver nanoparticles-benzalkonium chloride for the voltammetric determination of antiviral drug tenofovir. Electroanalysis. 30, 943–954 (2018)

    Article  CAS  Google Scholar 

  50. N. Festinger, K. Spilarewicz-stanek, K. Borowczyk, D. Guziejewski, Highly sensitive determination of tenofovir in pharmaceutical formulations and patients urine – comparative electroanalytical studies using different sensing methods. Molecules. 27(6), 1992 (2022)

    Article  CAS  Google Scholar 

  51. G. Shaw, Bicyclic 5–6 systems: purines. Compr. Heterocycl. Chem. II. A. Rev. Lit. 1982–1995(7), 397–429 (1996)

    Google Scholar 

  52. H. Kamiya, H. Kasai, Formation of 2-hydroxydeoxyadenosine triphosphate, an oxidatively damaged nucleotide, and its incorporation by DNA polymerases. Steady-state kinetics of the incorporation. J. Biol. Chem. 270, 19446–19450 (1995)

    Article  CAS  Google Scholar 

  53. Y. Tsurudome, T. Hirano, H. Kamiya, R. Yamaguchi, S. Asami, H. Itoh, H. Kasai, 2-Hydroxyadenine, a mutagenic form of oxidative DNA damage, is not repaired by a glycosylase type mechanism in rat organs. Mutat. Res. DNA. Repair. 408, 121–127 (1998)

    Article  CAS  Google Scholar 

  54. H. Kamiya, H. Kasai, 2-Hydroxyadenine (isoguanine) as oxidative DNA damage: its formation and mutation inducibility (Nucleic Acids Symp. Ser., 1995) pp. 233–234

  55. M. Famulok, G. Mayer, M. Blind, Nucleic acid aptamers - from selection in vitro to applications in vivo. Acc. Chem. Res. 33, 591–599 (2000)

    Article  CAS  Google Scholar 

  56. S. Tombelli, M. Minunni, M. Mascini, Analytical applications of aptamers. Biosens. Bioelectron. 20, 2424–2434 (2005)

    Article  CAS  Google Scholar 

  57. N. Aliakbarinodehi, P. Jolly, N. Bhalla, A. Miodek, G. De Micheli, P. Estrela, S. Carrara, Aptamer-based field-effect biosensor for tenofovir detection. Sci. Rep. 7, 1–10 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

College of Health Sciences, University of KwaZulu- Natal (CHS-UKZN). Furthermore, the authors wish to acknowledge Nanotechnology for sustainable development platform of UKZN and UKZN microscopy and microanalysis unit.

Funding

Rajshekhar Karpoormath is funded by the College of Health of Science, UKZN (RM27) and National research Foundation, South Africa (Grant number:129247). Fee Remission was provided by College of Health Science to John Alake.

Author information

Authors and Affiliations

Authors

Contributions

John Alake: conceptualization, methodology, investigation, and drafting of manuscript. Zondi Nate: conceptualization, validation, supervision, and review of manuscript. Darko Kwabena Adu: validation. Blessing Wisdom Ike: validation. Ruchika Chauhan: supervision and review of manuscript. Rajshekhar Karpoormath: supervision and funding and resources acquisition.

Corresponding author

Correspondence to Rajshekhar Karpoormath.

Ethics declarations

Ethics Approval

Ethical exemption (00015845) was approved by the Biomedical Research Ethics Committee (BREC), University of KwaZulu-Natal.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Nickel sulphide nanoparticles decorated on poly(acrylic acid) coated multiwalled carbon nanotube was synthesised by a simple one-step solvothermal method.

• The composite modified glassy carbon shows an electro-catalytic behaviour towards tenofovir with a limit of detection of 5.12 × 10−12 M in human urine.

• The electrode demonstrated good reproducibility, selectivity, and sensitivity.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1464 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alake, J., Nate, Z., Adu, D.K. et al. Facile One-Step Synthesis of Nickel Sulphide Nanoparticles Decorated Poly (Acrylic Acid) Coated Multi-Walled Carbon Nanotube for Detection of Tenofovir in Human Urine. Electrocatalysis 14, 232–246 (2023). https://doi.org/10.1007/s12678-022-00784-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00784-w

Keywords

Navigation