Skip to main content
Log in

Controlled Synthesis of High-index Faceted Pt nanocatalysts Directly on Carbon Paper for Methanol Electrooxidation

  • Original Paper
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Platinum (Pt) nanocatalysts as the best catalysts for direct methanol fuel cell (DMFC) still face a huge challenge such as high cost, low utilization rate, activity and stability to be improved. Adjusting the surface structure of Pt nanoparticles (NPs) to achieve high-index facets with more active sites is an effective method to resolve the problems. Furthermore, the controlled synthesis of high-index faceted Pt (HIF-Pt) nanocatalysts directly on carbon paper, which is an important component of membrane electrode, can greatly promote the practical application of HIF-Pt nanocatalysts in DMFC. Herein, the HIF-Pt nanocatalysts supported on carbon paper (HIF-Pt/CP) were realized by developing an electrochemically controlled synthesis method. The fishbone-like and concave cube shaped Pt NPs surrounded by some high-index facets such as (200), (220), and (311), were achieved by adjusting the frequency and treatment time of applied potential. Hence, these HIF-Pt/CPs exhibit excellent activity and stability towards methanol electrooxidation during both cyclic voltammetry characterization and potentiostatic test. Especially, the specific activities and mass activities of HIF-Pt/CP-1 Hz reached 3.78 mA·cm−2 and 1.53 A·mg−1, which were 6.5 and 2.78 times higher than those of commercial Pt/C, respectively. And the direct growth of HIF-Pt NPs on carbon paper effectively improves the stability of the catalyst layer which shows great potential in the practical application in DMFC.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Xu, X. Zhang, H. Sun, Y. Yang, X. Dai, J. Gao, X. Li, P. Zhang, H.H. Wang, N.F. Yu, S.G. Sun, Synthesis of Pt-Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem. Int. Ed. Engl. 53, 12730s (2014)

  2. J. Zheng, D.A. Cullen, R.V. Forest, J.A. Wittkopf, Z. Zhuang, W. Sheng, J.G. Chen, Y. Yan, Platinum-Ruthenium Nanotubes and Platinum-Ruthenium Coated Copper Nanowires As Efficient Catalysts for Electro-Oxidation of Methanol. ACS Catal. 5, 1468s (2015)

    Article  Google Scholar 

  3. T. Radhakrishnan, N. Sandhyarani, Pt-Ag nanostructured 3D architectures: A tunable catalyst for methanol oxidation reaction. Electrochim. Acta 298, 835s (2019)

    Article  Google Scholar 

  4. O.Z. Sharaf, M.F. Orhan, An overview of fuel cell technology: Fundamentals and applications. Renew. Sust. Energ. Rev. 32, 810s (2014)

    Article  Google Scholar 

  5. T. Elmer, M. Worall, S. Wu, S.B. Riffat, Fuel cell technology for domestic built environment applications: State of-the-art review. Renew. Sust. Energ. Rev. 42, 913s (2015)

    Article  Google Scholar 

  6. F. Xiao, Y.C. Wang, Z.P. Wu, G. Chen, F. Yang, S. Zhu, K. Siddharth, Z. Kong, A. Lu, J.C. Li, C.J. Zhong, Z.Y. Zhou, M. Shao, Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. Adv. Mater. 2006292s (2021)

  7. L. Huang, B. Jing, Q.X. Li, W. Yi, S.G. Sun, Progress of Pt-Based Catalysts in Proton-Exchange Membrane Fuel Cells: A Review. J. Electrochem. 28, 2108061s (2022)

    Google Scholar 

  8. M.S. Alias, S.K. Kamarudin, A.M. Zainoodin, M.S. Masdar, Active direct methanol fuel cell: An overview. Int. J. Hydrogen Energy 45, 19620s (2020)

    Article  Google Scholar 

  9. A.A. Kulikovsky, Optimal temperature for DMFC stack operation. Electrochim. Acta 53, 6391s (2008)

    Article  Google Scholar 

  10. Z. Yuan, Y. Zhang, W. Fu, Z. Li, X. Liu, Investigation of a small-volume direct methanol fuel cell stack for portable applications. Energy 51, 462s (2013)

    Article  Google Scholar 

  11. A. Schulze Lohoff, D. Günther, M. Hehemann, M. Müller, D. Stolten, Extending the lifetime of direct methanol fuel cell systems to more than 20,000 h by applying ion exchange resins. Int. J. Hydrogen Energy 41, 15325s (2016)

    Article  Google Scholar 

  12. L. Xing, W. Shi, H. Su, Q. Xu, P.K. Das, B. Mao, K. Scott, Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization. Energy 177, 445s (2019)

    Article  Google Scholar 

  13. C.-Y. Liu, C.-C. Sung, A review of the performance and analysis of proton exchange membrane fuel cell membrane electrode assemblies. J. Power Sources 220, 348s (2012)

    Article  Google Scholar 

  14. N. Zamel, The catalyst layer and its dimensionality – A look into its ingredients and how to characterize their effects. J. Power Sources 309, 141s (2016)

    Article  Google Scholar 

  15. X. Yang, J. Xue, L. Feng, Pt nanoparticles anchored over Te nanorods as a novel and promising catalyst for methanol oxidation reaction. Chem. Commun. (Cambridge, U. K.) 55, 11247s (2019)

  16. Z.L. Zhao, Q. Wang, H. Du, T. Liang, H.M. An, C.M. Li, Sub-15 nm Pd@PtCu concave octahedron with enriched atomic steps as enhanced oxygen reduction electrocatalyst. J. Power Sources 434, 226742s (2019)

    Article  Google Scholar 

  17. Z. Li, X. Jiang, X. Wang, J. Hu, Y. Liu, G. Fu, Y. Tang, Concave PtCo nanocrosses for methanol oxidation reaction. Appl. Catal. B 277, 119135s (2020)

  18. S.K. Kamarudin, N. Hashim, Materials, morphologies and structures of MEAs in DMFCs. Renew. Sust. Energ. Rev. 16, 2494s (2012)

    Article  Google Scholar 

  19. S. Shin, J. Liu, A. Akbar, S. Um, Nanoscale transport characteristics and catalyst utilization of vertically aligned carbon nanotube catalyst layers for fuel cell applications: Comprehensive stochastic modeling of composite morphological structures. J. Catal. 377, 465s (2019)

    Article  Google Scholar 

  20. P. Liu, G.-P. Yin, C.-Y. Du, Composite anode catalyst layer for direct methanol fuel cell. Electrochem. Commun. 10, 1471s (2008)

    Article  Google Scholar 

  21. O. Le Bacq, A. Pasturel, R. Chattot, B. Previdello, J. Nelayah, T. Asset, L. Dubau, F. Maillard, Effect of Atomic Vacancies on the Structure and the Electrocatalytic Activity of Pt-rich/C Nanoparticles: A Combined Experimental and Density Functional Theory Study. ChemCatChem. 9, 2324s (2017)

    Article  Google Scholar 

  22. F. Maillard, S. Schreier, M. Hanzlik, E.R. Savinova, S. Weinkauf, U. Stimming, Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation. Phys. Chem. Chem. Phys. 7, 385s (2005)

    Article  Google Scholar 

  23. Z.Y. Zhou, Z.Z. Huang, D.J. Chen, Q. Wang, N. Tian, S.G. Sun, High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew. Chem. Int. Ed. Eng l 49, 421s (2010)

  24. L. Zhang, W. Niu, G. Xu, Synthesis and applications of noble metal nanocrystals with high-energy facets. Nano Today 7, 586s (2012)

    Article  Google Scholar 

  25. T. Sheng, Y.F. Xu, Y.X. Jiang, L. Huang, N. Tian, Z.Y. Zhou, I. Broadwell, S.G. Sun, Structure Design and Performance Tuning of Nanomaterials for Electrochemical Energy Conversion and Storage. Acc. Chem. Res. 49, 2569s (2016)

    Article  Google Scholar 

  26. Y. Wang, H. Zhuo, H. Sun, X. Zhang, X. Dai, C. Luan, C. Qin, H. Zhao, J. Li, M. Wang, J.-Y. Ye, S.-G. Sun, Implanting Mo Atoms into Surface Lattice of Pt3Mn Alloys Enclosed by High-Indexed Facets: Promoting Highly Active Sites for Ethylene Glycol Oxidation. ACS Catal. 9, 442s (2018)

    Article  Google Scholar 

  27. J. Geng, Z. Zhu, X. Bai, F. Li, J. Chen, Hot-Injection Synthesis of PtCu3 Concave Nanocubes with High-Index Facets for Electrocatalytic Oxidation of Methanol and Formic Acid. ACS Appl. Energy Mater. 3, 1010s (2020)

    Article  Google Scholar 

  28. L. Huang, X. Zhang, Y. Han, Q. Wang, Y. Fang, S. Dong, High-Index Facets Bounded Platinum-Lead Concave Nanocubes with Enhanced Electrocatalytic Properties. Chem. Mater. 29, 4557s (2017)

    Article  Google Scholar 

  29. J. Xiao, S. Liu, N. Tian, Z.Y. Zhou, H.X. Liu, B.B. Xu, S.G. Sun, Synthesis of convex hexoctahedral Pt micro/nanocrystals with high-index facets and electrochemistry-mediated shape evolution. J Am Chem Soc 135, 18754s (2013)

    Article  Google Scholar 

  30. C. Xiao, N. Tian, Z.Y. Zhou, S.G. Sun, Electrochemical Preparations and Applications of Nano-Catalysts with High-Index Facets. J. Electrochem. 26, 61s (2020)

    Google Scholar 

  31. Na Tian Z-YZ, Shi-Gang Sun, Yong Ding, Zhong Lin Wang, Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity. Science 316, 732s (2007)

    Article  Google Scholar 

  32. S.-H. Uhm, H.-R. Jeon, J.-Y. Lee, Electrocatalytic Oxidation of HCOOH on an Electrodeposited AuPt Electrode: its Possible Application in Fuel Cells. J. Electrochem. Sci. 1, 10s (2010)

    Article  Google Scholar 

  33. E. Negro, R. Latsuzbaia, M. Dieci, I. Boshuizen, G.J.M. Koper, Pt electrodeposited over carbon nano-networks grown on carbon paper as durable catalyst for PEM fuel cells. Appl. Catal. B 166–167, 155s (2015)

  34. W.E. Kosimaningrum, T.X.H. Le, Y. Holade, M. Bechelany, S. Tingry, B. Buchari, I. Noviandri, C. Innocent, M. Cretin, Surfactant- and Binder-Free Hierarchical Platinum Nanoarrays Directly Grown onto a Carbon Felt Electrode for Efficient Electrocatalysis. ACS Appl. Mater. Interfaces 9, 22476s (2017)

    Article  Google Scholar 

  35. Y. Holade, D.P. Hickey, S.D. Minteer, Halide-regulated growth of electrocatalytic metal nanoparticles directly onto a carbon paper electrode. J. Mater. Chem. A 4, 17154s (2016)

    Article  Google Scholar 

  36. S. Trasatti, O.A. Petrii, Real surface area measurements in electrochemistry. Pure & Appl Chern. 63, 711s (1991)

  37. T.J. Schmidt, H.A. Gasteiger, G.D. Stäb, P.M. Urban, D.M. Kolb, R.J. Behm, Characterization of high-surface-area electrocatalysts using a rotating disk electrode configuration. J. Electrochem. Soc. 145, 2354s (1998)

  38. S.K. Nagakazu Furuya, Hydrogen adsorption on platinum single-crystal surfaces. Surface Science. 220, 18s (1989)

  39. Na. Tian, Z-YZ, Shi-Gang Sun, Platinum Metal Catalysts of High-Index Surfaces: From Single-Crystal Planes to Electrochemically Shape-Controlled Nanoparticles. J. Phys. Chem. C 112, 19801s (2008)

    Article  Google Scholar 

  40. S. Yang, S. Li, L. Song, Y. Lv, Z. Duan, C. Li, R.F. Praeg, D. Gao, G. Chen, Defect-density control of platinum-based nanoframes with high-index facets for enhanced electrochemical properties. Nano Res. 12, 2881s (2019)

    Article  Google Scholar 

  41. K. Peng, W. Zhang, N. Bhuvanendran, Q. Ma, Q. Xu, L. Xing, L. Khotseng, H. Su, Pt-based (Zn, Cu) nanodendrites with enhanced catalytic efficiency and durability toward methanol electro-oxidation via trace Ir-doping engineering. J. Colloid Interface Sci. 598, 126s (2021)

    Article  Google Scholar 

  42. Y. Lu, Y.-X. Deng, Y.-J. Lin, Y.-F. Han, L.-H. Weng, Z.-H. Li, G.-X. Jin, Molecular Borromean Rings Based on Dihalogenated Ligands. Chem. 3, 110s (2017)

    Article  Google Scholar 

  43. S. Luo, P.K. Shen, Concave Platinum-Copper Octopod Nanoframes Bounded with Multiple High-Index Facets for Efficient Electrooxidation Catalysis. ACS Nano 11, 11946s (2017)

    Article  Google Scholar 

  44. L.C. Gontard, L.Y. Chang, C.J. Hetherington, A.I. Kirkland, D. Ozkaya, R.E. Dunin-Borkowski, Aberration-corrected imaging of active sites on industrial catalyst nanoparticles. Angew. Chem., Int. Ed. Engl. 46, 3683s (2007)

  45. F. Maillard, M. Eikerling, O.V. Cherstiouk, S. Schreier, E. Savinova, U. Stimming, Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: the role of surface mobility. Faraday Discuss. 125, 357s (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Key Research and Development Program of China (2017YFA0206500), Natural Science Foundation of China (Grant No. 21802112) and Natural Science Foundation of Fujian Province (No. 2019J05091).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Huang or Shi-Gang Sun.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1508 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, RY., Huang, R., Cheng, XY. et al. Controlled Synthesis of High-index Faceted Pt nanocatalysts Directly on Carbon Paper for Methanol Electrooxidation. Electrocatalysis 13, 747–758 (2022). https://doi.org/10.1007/s12678-022-00749-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00749-z

Keywords

Navigation