Skip to main content

Advertisement

Log in

Surface Modification of Biodegradable Zinc Alloy for Biomedical Applications

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

In recent years, zinc, and its alloys, along with biodegradable metals made of Mg and Fe, have been projected as potential replacements for biodegradable metals due to their better corrosion rate and high biocompatibility in gastrointestinal, bone, and cardiovascular contexts. Clinical application of Zn-related biodegradable metals with a reasonable rate of membrane degradation and outstanding mechanical properties for guided bone regeneration membranes is very promising. Nevertheless, in order to properly control their biodegradation behavior, Zn-based biodegradable metals do require surface treatment. First off, certain Zn-based biodegradable metals that were implanted in a cardiovascular background showed signs of intimal activation and moderate inflammation. Second, Zn-based biodegradable metals for orthopaedic applications biodegrade at relatively moderate rates, resulting in long-term retention after completing their task. The development of next-generation orthopaedic implants made on Zn related biodegradable alloys or composites has the capacity to eliminate revision surgeries and biocompatibility problems. In the meantime, increased Zn2+ release during breakdown will result in delayed osseointegration and in vitro cytotoxicity. Surface modification Zn-based biomaterials can solve above problems. In this review, we first provide a summary of the available Zn-based alloy’s surface modification techniques for biomedical applications such as chemical conversion coatings, different types of chemical conversion coating, and organic coatings. Advantages and challenges of Zn-based biomaterials are also discussed at the last.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

BM:

biodegradable metals

ALP:

alkaline phosphatase

BMP:

bone morphogenetic protein

SLM:

selective laser melting

SPS:

spark plasma sintering

ECAP:

equal channel angular pressing

HDG:

hot-dip galvanizing

OCC:

organic conversion coatings

RE:

rare Earth

PEO:

plasma Electrolytic Oxidation

RT:

room temperature

References

  1. Peng, W., Voshage, M., Jauer, L., Chen, Y., Qin, Y., Poprawe, R., et al. (2018). Laser additive manufacturing of Zn metal parts for biodegradable applications: Processing, formation quality and mechanical properties. Materials & Design, 155, 36–45.

    Article  Google Scholar 

  2. Chengde, G., Peng, S., Feng, P., & Shuai, C. (2017). Bone biomaterials and interactions with stem cells. Bone Research, 5(1), 1–33.

    Google Scholar 

  3. Fufen, L., Li, S., Liu, Y., Zhang, Z., & Li, Z. (2022). Current advances in the roles of doped bioactive metal in biodegradable polymer composite scaffolds for bone repair: A mini review. Advanced Engineering Materials, 24(8), 2101510.

    Article  Google Scholar 

  4. Fei, X., Li, S., Yin, D., Xie, J., Rommens, P. M., Xiang, Z., et al. (2022). Recent progress in Mg-based alloys as a novel bioabsorbable biomaterials for orthopedic applications. Journal of Magnesium and Alloys.

  5. Hussain, M., Ullah, S., Raza, M. R., Abbas, N., & Ali, A. (2023). Recent developments in Zn-Based Biodegradable Materials for Biomedical Applications. Journal of Functional Biomaterials, 14(1), 1.

    Article  Google Scholar 

  6. Jing, W., Dou, J., Wang, Z., Hu, C., Yu, H., & Chen, C. (2022). Research progress of biodegradable magnesium-based biomedical materials: A review. Journal of Alloys and Compounds, 166377.

  7. Liu, Y., Du, T., Qiao, A., Mu, Y., & Yang, H. (2022). Zinc-based biodegradable materials for orthopaedic internal fixation. Journal of Functional Biomaterials, 13(4), 164–164.

    Article  Google Scholar 

  8. Paiva, J. C., Oliveira, L., Vaz, M. F., & Costa-de-Oliveira, S. (2022). Biodegradable bone implants as a new hope to reduce device-associated infections—a systematic review. Bioengineering, 9(8), 409–409.

    Article  Google Scholar 

  9. Pothupitiya, J. U., Zheng, C., & Saltzman, W. M. (2022). Synthetic biodegradable polyesters for implantable controlled-release devices. Expert Opinion on Drug Delivery, 19(10), 1351–1364.

    Article  Google Scholar 

  10. Dutta, S., Khan, N. S., Prakash, S., Gupta, D., Ghosh, S. K., et al. (2022). In vitro degradation and in vivo biocompatibility of strontium- doped magnesium phosphate-reinforced magnesium composites. ACS Biomaterials Science & Engineering, 8(10), 4236–4248.

    Article  Google Scholar 

  11. Pesode, P., Barve, S., Wankhede, S. V., Jadhav, D. R., & Pawar, S. K. (2023). Titanium alloy selection for biomedical application using weighted sum model methodology. Materials Today: Proceedings, 72, 724–728.

    Google Scholar 

  12. Thakur, B., Barve, S., & Pesode, P. (2023). Investigation on mechanical properties of AZ31B magnesium alloy manufactured by stir casting process. Journal of the Mechanical Behavior of Biomedical Materials, 138, 105641.

    Article  Google Scholar 

  13. Bo, J., Yang, H., Han, Y., Zhang, Z., Qu, X., Zhuang, Y., et al. (2020). In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications. Acta Biomaterialia, 108, 358–372.

    Article  Google Scholar 

  14. Pan, Z. X., Jia, W., Zhou, J., Yan, P., Wang, W., Yuan, Y., et al. (2019). Osteogenic and pH stimuli-responsive self-healing coating on biomedical Mg-1Ca alloy. Acta Biomaterialia, 92, 336–350.

    Article  Google Scholar 

  15. Kafri, A., Ovadia, S., Yosafovich-Doitch, G., & Aghion, E. (2019). The effects of 4% Fe on the performance of pure zinc as biodegradable implant material. Annals of Biomedical Engineering, 47, 1400–1408.

    Article  Google Scholar 

  16. McCall, K. A., Huang, C., & Fierke, C. A. (2000). Function and mechanism of zinc metalloenzymes. The Journal of Nutrition, 130(5), 1437–1446.

    Article  Google Scholar 

  17. Masayoshi, Y. (2010). Role of nutritional zinc in the prevention of osteoporosis. Molecular and Cellular Biochemistry, 338, 241–254.

    Article  Google Scholar 

  18. Tiffany, A. S., Gray, D. L., Woods, T. J., Subedi, K., & Harley, B. A. C. (2019). The inclusion of zinc into mineralized collagen scaffolds for craniofacial bone repair applications. Acta Biomaterialia, 93, 86–96.

    Article  Google Scholar 

  19. Park, K. H., Choi, Y., Yoon, D. S., Lee, K. M., Kim, D., & Lee, J. W. (2018). Zinc promotes osteoblast differentiation in human mesenchymal stem cells via activation of the cAMP-PKA-CREB signaling pathway. Stem Cells and Development, 27(16), 1125–1135.

    Article  Google Scholar 

  20. Hongtao, Y., Qu, X., Lin, W., Chen, D., Zhu, D., Dai, K., et al. (2018). Enhanced osseointegration of Zn-Mg composites by tuning the release of Zn ions with sacrificial Mg-rich anode design. ACS Biomaterials Science & Engineering, 5(2), 453–467.

    Google Scholar 

  21. Chi, X., Wang, L., Ren, Y., Sun, S., Zhang, E., Yan, C., et al. (2018). Indirectly extruded biodegradable Zn-0.05 wt% Mg alloy with improved strength and ductility: In vitro and in vivo studies. Journal of Materials Science & Technology, 34(9), 1618–1627.

    Article  Google Scholar 

  22. Di, T., Xu, Y., Liu, D., & Sun, X. (2022). Microstructure, Mechanical Performance and Anti-Bacterial Activity of Degradable Zn-Cu-Ag Alloy. Metals, 12(9), 1444–1444.

    Article  Google Scholar 

  23. Tong, X., Zhu, L., Wu, Y., Song, Y., Wang, K., Huang, S., et al. (2022). A biodegradable Fe/Zn-3Cu composite with requisite properties for orthopedic applications. Acta Biomaterialia, 146, 506–521.

    Article  Google Scholar 

  24. Bhaskar, T., Barve, S., & Pesode, P. Magnesium-based nanocomposites for biomedical applications. Advanced Materials for Biomechanical Applications, 2022.

  25. Pesode, P., & Barve, S. Magnesium Alloy for Biomedical Applications. Advanced Materials for Biomechanical Applications, 2022.

  26. Wankhede, S., Pesode, P., Gaikwad, S., Pawar, S., & Chipade, A. (2023, April). Implementing Combinative Distance Base Assessment (CODAS) for selection of natural fibre for long lasting composites. In Materials Science Forum (Vol. 1081, pp. 41-48). Trans Tech Publications Ltd.

  27. Wei, Y., Xia, D., Wu, S., Zheng, Y., Guan, Z., & Rau, J. V. (2022). A review on current research status of the surface modification of Zn-based biodegradable metals. Bioactive Materials, 7, 192–216.

    Article  Google Scholar 

  28. Li, H. F., Shi, Z. Z., & Wang, L. N. (2020). Opportunities and challenges of biodegradable Zn-based alloys. Journal of Materials Science & Technology, 46, 136–138.

    Article  Google Scholar 

  29. Humayun, K., Munir, K., Wen, C., & Li, Y. (2021). Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioactive Materials, 6(3), 836–879.

    Article  Google Scholar 

  30. Zhang-Zhi, S., Gao, X. X., Zhang, H. J., Liu, X. F., Li, H. Y., Zhou, C., et al. (2020). Design biodegradable Zn alloys: Second phases and their significant influences on alloy properties. Bioactive Materials, 5(2), 210–218.

    Article  Google Scholar 

  31. He, G. H., Li, Q., Jia, D., Bian, S., Guan, O., Kulyasova, R. Z., et al. (2022). Recent advances on the mechanical behavior of zinc based biodegradable metals focusing on the strain softening phenomenon. Acta Biomaterialia.

  32. Nan, Y., Venezuela, J., Almathami, S., & Dargusch, M. (2022). Zinc-nutrient element based alloys for absorbable wound closure devices fabrication: Current status, challenges, and future prospects. Biomaterials, 280, 121301.

    Article  Google Scholar 

  33. Kai, C., Zhao, L., Sun, J., Gu, X., Huang, C., Su, H., et al. (2022). Utilizing biodegradable alloys as guided bone regeneration (GBR) membrane: Feasibility and challenges. Science China Materials, 65(10), 2627–2646.

    Article  Google Scholar 

  34. Svenja, H., Höhlinger, M., Hernández, Y. T., Palacio, J. J. P., Ortiz, J. A. R., Wagener, V., et al. (2017). Electrophoretic deposition and characterization of chitosan/bioactive glass composite coatings on Mg alloy substrates. Electrochimica Acta, 232, 456–464.

    Article  Google Scholar 

  35. Zheng, Y. F., Gu, X. N., & Witte, F. (2014). Biodegradable metals. Materials Science and Engineering: R: Reports, 77, 1–34.

    Article  Google Scholar 

  36. Guannan, L., Yang, H., Zheng, Y., Chen, X. H., Yang, J. A., Zhu, D., et al. (2019). Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility. Acta Biomaterialia, 97, 23–45.

    Article  Google Scholar 

  37. James, F. S., Fishbein, M., Helfant, R., & Fagin, J. (1991). A paradigm for restenosis based on cell biology: Clues for the development of new preventive therapies. Journal of the American College of Cardiology, 17(3), 758–769.

    Article  Google Scholar 

  38. Tanja, K., Fischerauer, S. F., Hänzi, A. C., Uggowitzer, P. J., Löffler, J. F., & Weinberg, A. M. (2012). Magnesium alloys for temporary implants in osteosynthesis: In vivo studies of their degradation and interaction with bone. Acta Biomaterialia, 8(3), 1230–1238.

    Article  Google Scholar 

  39. Gu, X. N., Xie, X. H., Li, N., Zheng, Y. F., & Qin, L. J. A. B. (2012). In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomaterialia, 8(6), 2360–2374.

    Article  Google Scholar 

  40. Tuminoh, H., Hermawan, H., & Ramlee, M. H. (2022). Processing and properties optimisation of carbon nanofibre-reinforced magnesium compos- ites for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 135, 105457.

    Article  Google Scholar 

  41. Tanja, K., Moszner, F., Fischerauer, S., Fiedler, M., Martinelli, E., Eichler, J., et al. (2014). Biodegradable Fe-based alloys for use in osteosynthesis: Outcome of an in vivo study after 52 weeks. Acta Biomaterialia, 10(7), 3346–3353.

    Article  Google Scholar 

  42. Daniel, P., Edick, J., Tauscher, A., Pokorney, E., Bowen, P., Gelbaugh, J., et al. (2012). A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100(1), 58–67.

    Google Scholar 

  43. Jiazhen, Y. Z., Jiang, Z., Shang, B., Zhao, M., Jiao, W., Liu, M., et al. (2021). Biodegradable metals for bone defect repair: A systematic review and meta-analysis based on animal studies. Bioactive Materials, 6(11), 4027–4052.

    Article  Google Scholar 

  44. O’Connor, J. P., Kanjilal, D., Teitelbaum, M., Lin, S. S., & Cottrell, J. A. (2020). Zinc as a therapeutic agent in bone regeneration. Materials, 13(10), 2211.

    Article  Google Scholar 

  45. Dai, C., Waite, L. C., & Pierce, W. M. (1999). In vitro effects of zinc on markers of bone formation. Biological Trace Element Research, 68, 225–234.

    Article  Google Scholar 

  46. Masayoshi, Y., & Matsui, T. (1996). Stimulatory effect of zinc-chelating dipeptide on deoxyribonucleic acid synthesis in osteoblastic MC3T3-E1 cells. Peptides, 17(7), 1207–1211.

    Article  Google Scholar 

  47. Masayoshi, Y., Oishi, H., & Suketa, Y. (1987). Stimulatory effect of zinc on bone formation in tissue culture. Biochemical Pharmacology, 36(22), 4007–4012.

    Article  Google Scholar 

  48. Xuekun, Y. F., Li, T., Huang, Z., Yu, K., Ma, M., Yang, Q., et al. (2018). Runx2/osterix and zinc uptake synergize to orchestrate osteogenic differentiation and citrate containing bone apatite formation. Advanced Science, 5(4), 1700755.

    Article  Google Scholar 

  49. Shaoxiang, Z., Zhang, X., Zhao, C., Li, J., Song, Y., Xie, C., et al. (2010). Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomaterialia, 6(2), 626–640.

    Article  Google Scholar 

  50. Kai, P., Zhang, W., Shi, H., Dai, M., Wei, W., Liu, X., et al. (2022). Zinc Ion- crosslinked polycarbonate/heparin composite coatings for biodegradable Zn-alloy stent applications. Colloids and Surfaces B: Biointerfaces, 218, 112725.

    Article  Google Scholar 

  51. Venezuela, J., Jones, D., Johnston, S., & Dargusch, M. S. (2019). The prospects for biodegradable zinc in wound closure applications. Advanced Healthcare Materials, 8(16), 1900408.

    Article  Google Scholar 

  52. Patrick, B., Emily, K., Shearier, R., Zhao, S., Guillory, R. J., Zhao, F., et al. (2016). Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn-Alloys. Advanced Healthcare Materials, 5(10), 1121–1140.

    Article  Google Scholar 

  53. Li, H. F., Xie, X. H., Zheng, Y. F., Cong, Y., Zhou, F. Y., Qiu, K. J., et al. (2015). Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Scientific Reports, 5(1), 10719.

    Article  Google Scholar 

  54. Bo, J., Yang, H., Zhang, Z., Qu, X., Jia, X., Wu, Q., et al. (2021). Biodegradable Zn-Sr alloy for bone regeneration in rat femoral condyle defect model: In vitro and in vivo studies. Bioactive Materials, 6(6), 1588–1604.

    Article  Google Scholar 

  55. Qu, X., Yang, H., Jia, B., Yu, Z., Zheng, Y., & Dai, K. (2020). Biodegradable Zn-Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation. Acta Biomaterialia, 117, 400–417.

    Article  Google Scholar 

  56. Jixing, L., Tong, X., Shi, Z., Zhang, D., Zhang, L., Wang, K., et al. (2020). A biodegradable Zn-1Cu-0.1 Ti alloy with antibacterial properties for orthopedic applications. Acta Biomaterialia, 106, 410–427.

    Article  Google Scholar 

  57. Kun, W., Tong, X., Lin, J., Wei, A., Li, Y., Dargusch, M., et al. (2021). Binary Zn-Ti alloys for orthopedic applications: Corrosion and degradation behaviors, friction and wear performance, and cytotoxicity. Journal of Materials Science & Technology, 74, 216–229.

    Article  Google Scholar 

  58. Tong, X., Zhang, D., Lin, J., Dai, Y., Luan, Y., Sun, Q., et al. (2020). Development of biodegradable Zn-1Mg-0.1 RE (RE= Er, Dy, and Ho) alloys for biomedical applications. Acta Biomaterialia, 117, 384–399.

    Article  Google Scholar 

  59. Lin, J., Tong, X., Wang, K., Shi, Z., Li, Y., Dargusch, M., et al. (2021). Biodegradable Zn-3Cu and Zn-3Cu-0.2 Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications. Journal of Materials Science & Technology, 68, 76–90.

    Article  Google Scholar 

  60. Zeyi, G., Yao, G., Zeng, Y., & Li, X. (2020). Fabrication and characterization of in situ Zn-TiB2 nanocomposite. Procedia Manufacturing, 48, 332–337.

    Article  Google Scholar 

  61. Zeyi, G., Pan, S., Linsley, C., & Li, X. (2019). Manufacturing and characterization of Zn-WC as potential biodegradable material. Procedia Manufacturing, 34, 247–251.

    Article  Google Scholar 

  62. Venezuela, J., & Dargusch, M. S. (2019). The influence of alloying and fabrication techniques on the mechanical properties, biodegradability, and biocompatibility of zinc: A comprehensive review. Acta Biomaterialia, 87, 1–40.

    Article  Google Scholar 

  63. Xiwei, L., Sun, J., Qiu, K., Yang, Y., Pu, Z., Li, L., et al. (2016). Effects of alloying elements (Ca and Sr) on microstructure, mechanical property, and in vitro corrosion behavior of biodegradable Zn-1.5 Mg alloy. Journal of Alloys and Compounds, 664, 444–452.

    Article  Google Scholar 

  64. Bakhsheshi-Rad, H. R., Hamzah, E., Low, H. T., Kasiri-Asgarani, M., Farahany, S., Akbari, E., et al. (2017). Fabrication of biodegradable Zn-Al-Mg alloy: Mechanical properties, corrosion behavior, cytotoxicity, and antibacterial activities. Materials Science and Engineering: C, 73, 215–219.

    Article  Google Scholar 

  65. Tiantian, R., Gao, X., Xu, C., Yang, L., Guo, P., Liu, H., et al. (2019). Evaluation of as-extruded ternary Zn-Mg-Zr alloys for biomedical implantation material: In vitro and in vivo behavior. Materials and Corrosion, 70(6), 1056–1070.

    Article  Google Scholar 

  66. Zhang, L., Liu, X. Y., Huang, H., & Zhan, W. (2019). Effects of Ti on microstructure, mechanical properties and biodegradation behavior of Zn-Cu alloy. Materials Letters, 244, 119–122.

    Article  Google Scholar 

  67. Zhang-Zhi, S., Yu, J., Liu, X. F., Zhang, H. J., Zhang, D. W., Yin, Y. X., et al. (2019). Effects of Ag, Cu or Ca addition on microstructure and comprehensive properties of biodegradable Zn-0.8 Mn alloy. Materials Science and Engineering: C, 99, 969–978.

    Article  Google Scholar 

  68. Yu, Z., Yan, Y., Xu, X., Lu, Y., Chen, L., Li, D., et al. (2019). Investigation on the microstructure, mechanical properties, in vitro degradation behavior and biocompatibility of newly developed Zn-0.8% Li-(Mg, Ag) alloys for guided bone regeneration. Materials Science and Engineering: C, 99, 1021–1034.

    Article  Google Scholar 

  69. Zhang-Zhi, S., Yu, J., Liu, X. F., & Wang, L. N. (2018). Fabrication and characterization of novel biodegradable Zn-Mn-Cu alloys. Journal of Materials Science & Technology, 34(6), 1008–1015.

    Article  Google Scholar 

  70. Hongtao, Y., Qu, X., Lin, W., Wang, C., Zhu, D., Dai, K., et al. (2018). In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications. Acta Biomaterialia, 71, 200–214.

    Article  Google Scholar 

  71. Wang, C., Yang, H. T., Li, X., & Zheng, Y. F. (2016). In vitro evaluation of the feasibility of commercial Zn alloys as biodegradable metals. Journal of Materials Science & Technology, 32(9), 909–918.

    Article  Google Scholar 

  72. Bakhsheshi-Rad, H. R., Hamzah, E., Low, H. T., Cho, M. H., Kasiri-Asgarani, M., Farahany, S., Mostafa, A., & Medraj, M. (2017). Thermal characteristics, mechanical properties, in vitro degradation and cytotoxicity of novel biodegradable Zn–Al–Mg and Zn–Al–Mg–x Bi alloys. Acta Metallurgica Sinica (English Letters), 30, 201–211.

    Article  Google Scholar 

  73. Jan, P., Čapek, J., Hybášek, V., Průša, F., Hosová, K., Maňák, J., et al. (2020). Characterization of newly developed zinc composite with the content of 8 wt.% of hydroxyapatite particles processed by extrusion. Materials, 13(7), 1716–1716.

    Article  Google Scholar 

  74. Pathak, D. K., & Pandey, P. M. (2020). An experimental investigation of the fabrication of biodegradable zinc-hydroxyapatite composite material using microwave sintering. Proceedings of the Institution of Mechanical Engineers, 234, 2863–2880.

    Google Scholar 

  75. Pinc, J., Čapek, J., Kubásek, J., Průša, F., Hybášek, V., Veřtát, P., & Vojtěch, D. (2020). Characterization of a Zn-Ca5 (PO4) 3 (OH) composite with a high content of the hydroxyapatite particles prepared by the spark plasma sintering process. Metals, 10(3), 372.

    Article  Google Scholar 

  76. Jiří, K., Dvorský, D., Čapek, J., Pinc, J., & Vojtěch, D. (2019). Zn-Mg biodegradable composite: Novel material with tailored mechanical and corrosion properties. Materials, 12(23), 3930–3930.

    Article  Google Scholar 

  77. Chao, P., Sun, X., Xu, G., Su, Y., & Liu, D. (2020). The effects of β-TCP on mechanical properties, corrosion behavior and biocompatibility of β-TCP/Zn-Mg composites. Materials Science and Engineering: C, 108, 110397–110397.

    Article  Google Scholar 

  78. Lu, G., Guangquan, H. X., Bobo, L., Li, L., & Debao. (2019). Fabrication and properties of a biodegradable β-TCP/Zn-Mg bio-composite. Materials Research Express, 6(8), 865–866.

    Google Scholar 

  79. Kubásek, J., Vojtěch, D., Jablonská, E., Pospíšilová, I., Lipov, J., & Ruml, T. (2016). Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys. Materials Science and Engineering: C, 58, 24–35.

    Article  Google Scholar 

  80. Donghui, Z., Cockerill, I., Su, Y., Zhang, Z., Fu, J., Lee, K. W., et al. (2019). Mechanical strength, biodegradation, and in vitro and in vivo biocompatibility of Zn biomaterials. ACS Applied Materials & Interfaces, 11(7), 6809–6819.

    Article  Google Scholar 

  81. Youwen, Y., Yuan, F., Gao, C., Feng, P., Xue, L., He, S., et al. (2018). A combined strategy to enhance the properties of Zn by laser rapid solidification and laser alloying. Journal of the Mechanical Behavior of Biomedical Materials, 82, 51–60.

    Article  Google Scholar 

  82. Mostaed, E., Sikora-Jasinska, M., Mostaed, A., Loffredo, S., Demir, A., Previtali, B., et al. (2016). Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation. Journal of the Mechanical Behavior of Biomedical Materials, 60, 581–602.

    Article  Google Scholar 

  83. Pachla, W., Przybysz, S., Jarzębska, A., Bieda, M., Sztwiertnia, K., Kulczyk, M., et al. (2021). Structural and mechanical aspects of hypoeutectic Zn- Mg binary alloys for biodegradable vascular stent applications. Bioactive Materials, 6(1), 26–44.

    Article  Google Scholar 

  84. Chao, S., Liu, X., Fan, B., Lan, P., Zhou, F., Li, X., et al. (2016). Mechanical properties, in vitro degradation behavior, hemocompatibility and cyto- toxicity evaluation of Zn-1.2 Mg alloy for biodegradable implants. RSC Advances, 6(89), 86410–86419.

    Article  Google Scholar 

  85. Guo, P., Zhu, X., Yang, L., Deng, L., Zhang, Q., Li, B. Q., ... & Song, Z. (2021). Ultrafine-and uniform-grained biodegradable Zn-0.5 Mn alloy: Grain refinement mechanism, corrosion behavior, and biocompatibility in vivo. Materials Science and Engineering: C, 118, 111391.

  86. Zhang-Zhi, S., Gao, X. X., Chen, H. T., Liu, X. F., Li, A., Zhang, H. J., et al. (2020). Enhancement in mechanical and corrosion resistance properties of a biodegradable Zn-Fe alloy through second phase refinement. Materials Science and Engineering: C, 116, 111197.

    Article  Google Scholar 

  87. Kafri, A., Ovadia, S., Goldman, J., Drelich, J., & Aghion, E. (2018). The suitability of Zn–1.3% Fe alloy as a biodegradable implant material. Metals, 8(3), 153.

    Article  Google Scholar 

  88. Shan, Z., Mcnamara, C. T., Bowen, P. K., Verhun, N., Braykovich, J. P., Goldman, J., et al. (2017). Structural characteristics and in vitro biodegradation of a novel Zn-Li alloy prepared by induction melting and hot rolling. Metallurgical and Materials Transactions A, 48, 1204–1215.

    Article  Google Scholar 

  89. Hongtao, Y., Jia, B., Zhang, Z., Qu, X., Li, G., Lin, W., et al. (2020). Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nature Communications, 11(1), 401.

    Article  Google Scholar 

  90. Cijun, S., Cheng, Y., Yang, Y., Peng, S., Yang, W., & Qi, F. (2019). Laser additive manufacturing of Zn-2Al part for bone repair: Formability, microstructure and properties. Journal of Alloys and Compounds, 798, 606–615.

    Article  Google Scholar 

  91. Xian, D. T., Zhang, X., Zhang, Y., Su, Z., Shi, K., Wang, J., et al. (2018). Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn-5Ge alloy for biodegradable implant materials. Acta Biomaterialia, 82, 197–204.

    Article  Google Scholar 

  92. Zibo, T., Huang, H., Niu, J., Zhang, L., Zhang, H., Pei, J., et al. (2017). Design and characterizations of novel biodegradable Zn-Cu-Mg alloys for potential biodegradable implants. Materials & Design, 117, 84–94.

    Article  Google Scholar 

  93. Xiwei, L., Sun, J., Yang, Y., Zhou, F., Pu, Z., Li, L., et al. (2016). Microstructure, mechanical properties, in vitro degradation behavior and hemocompatibility of novel Zn-Mg-Sr alloys as biodegradable metals. Materials Letters, 162, 242–245.

    Article  Google Scholar 

  94. Xiwei, L., Sun, J., Zhou, F., Yang, Y., Chang, R., Qiu, K., et al. (2016). Micro-alloying with Mn in Zn-Mg alloy for future biodegradable metals application. Materials & Design, 94, 95–104.

    Article  Google Scholar 

  95. Apelian, D., Paliwal, M., & Herrschaft, D. C. (1981). Casting with zinc alloys. Jom, 33, 12–20.

    Article  Google Scholar 

  96. Abou El-khair, M. T., Daoud, A., & Ismail, A. (2004). Effect of different Al contents on the microstructure, tensile and wear properties of Zn-based alloy. Materials Letters, 58(11), 1754–1760.

    Article  Google Scholar 

  97. Jelena, B., Vesna, B., Mišković-Stanković, B., Bibić, N., & Dražić, D. M. (2007). The influence of zinc surface pretreatment on the adhesion of epoxy coating electrodeposited on hot-dip galvanized steel. Progress in Organic Coatings, 58(4), 323–330.

    Article  Google Scholar 

  98. Michele, F., Poelman, M., Olivier, M., & Deflorian, F. (2019). Sebacic acid as corrosion inhibitor for hot-dip galvanized (HDG) steel in 0.1 M NaCl. Surface and Interface Analysis, 51(5), 541–551.

    Article  Google Scholar 

  99. Shibli, S. M. A., Meena, B. N., & Remya, R. (2015). A review on recent approaches in the field of hot dip zinc galvanizing process. Surface and Coatings Technology, 262, 210–215.

    Article  Google Scholar 

  100. Rita, F., Carlos, B., Silva, J. R., & Pereira, E. V. (2016). Hybrid sol-gel coatings for corrosion protection of galvanized steel in simulated concrete pore solution. Journal of Coatings Technology and Research, 13, 355–373.

    Article  Google Scholar 

  101. Pistofidis, N., Vourlias, G., Chaliampalias, D., Chrysafis, K., Stergioudis, G., & Polychroniadis, E. K. (2006). On the mechanism of formation of zinc pack coatings. Journal of Alloys and Compounds, 407(1-2), 221–225.

    Article  Google Scholar 

  102. Seré, P., Ricardo, M., Banera, W. A., Egli, C. I., Elsner, A. R. D., Sarli, C., et al. (2016). Effect on temporary protection and adhesion promoter of silane nanofilms applied on electro-galvanized steel. International Journal of Adhesion and Adhesives, 65, 88–95.

    Article  Google Scholar 

  103. Ortiz, Z. I., Díaz-Arista, P., Meas, Y., Ortega-Borges, R., & Trejo, G. (2009). Characterization of the corrosion products of electrodeposited Zn, Zn- Co and Zn-Mn alloys coatings. Corrosion Science, 51(11), 2703–2715.

    Article  Google Scholar 

  104. Guangyuan, T., Zhang, M., Zhao, Y., Li, J., Wang, H., Zhang, X., et al. (2019). High corrosion protection performance of a novel nonfluorinated biomimetic superhydrophobic Zn-Fe coating with echinopsis multiplex- like structure. ACS Applied Materials & Interfaces, 11(41), 38205–38217.

    Article  Google Scholar 

  105. Yang, L., Wu, Y., Bian, D., Gao, S., Leeflang, S., Guo, H., et al. (2017). Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells. Acta Biomaterialia, 62, 418–433.

    Article  Google Scholar 

  106. Helga, H., Virtanen, S., & Boccaccini, A. R. (2012). Biomedical coatings on magnesium alloys-a review. Acta Biomaterialia, 8(7), 2442–2455.

    Article  Google Scholar 

  107. Pesode, P., Barve, S., Wankhede, S. V., & Chipade, A. (2023). Metal oxide coating on biodegradable magnesium alloys. 3c Empresa: Investigación y Pensamiento Crítico, 12(1), 392–421.

    Article  Google Scholar 

  108. Schäfer, H., & Stock, H. R. (2005). Improving the corrosion protection of aluminium alloys using reactive magnetron sputtering. Corrosion Science, 47(4), 953–964.

    Article  Google Scholar 

  109. Khan, S. A., Miyashita, Y., & Mutoh, Y. (2015). Corrosion fatigue behavior of AM60 magnesium alloy with anodizing layer and chemical-conversion- coating layer. Materials and Corrosion, 66(9), 940–948.

    Article  Google Scholar 

  110. Jérôme, F., Dupin, J. C., & Pommiers, S. (2017). Corrosion protection of magnesium alloys: from chromium VI process to alternative coatings technologies. Magnesium Alloys, 161–187.

  111. Cecilia, A., Gade, A. L., & Hanssen, O. J. (2012). Combining REACH, environmental and economic performance indicators for strategic sustainable product development. Journal of Cleaner Production, 35, 71–78.

    Article  Google Scholar 

  112. Chao-Yun, W., & Zhang, J. (2011). State-of-art on corrosion and protection of magnesium alloys based on patent literatures. Transactions of Nonferrous Metals Society of China, 21, 892–902.

    Article  Google Scholar 

  113. Pesode, P., Barve, S., Mane, Y., Dayane, S., Kolekar, S., & Mohammed, K. A. (2023). Recent advances on biocompatible coating on magnesium alloys by micro arc oxidation technique. Key Engineering Materials, 944, 117–134.

    Article  Google Scholar 

  114. Guo, Y., & Frankel, G. S. (2012). Characterization of trivalent chromium process coating on AA2024-T3. Surface and Coatings Technology, 206(19), 3895–3902.

    Article  Google Scholar 

  115. Shun-Yi, J., Chu, Y. R., & Lin, C. S. (2015). Permanganate conversion coating on AZ31 magnesium alloys with enhanced corrosion resistance. Corrosion Science, 93, 301–309.

    Article  Google Scholar 

  116. Chang-Sheng, L., Lv, Z. F., Zhu, Y. L., Xu, S. A., & Wang, H. (2014). Protection of aluminium foil AA8021 by molybdate-based conversion coatings. Applied Surface Science, 288, 497–502.

    Article  Google Scholar 

  117. Jiang, L., Wolpers, M., Volovitch, P., & Ogle, K. (2012). The degradation of phosphate conversion coatings by electrochemically generated hydroxide. Corrosion Science, 55, 76–89.

    Article  Google Scholar 

  118. Li, G. Y., Lian, J. S., Niu, L. Y., & Jiang, Z. H. (2006). Influence of pH of phosphating bath on the zinc phosphate coating on AZ91D magnesium alloy. Advanced Engineering Materials, 8(1-2), 123–127.

    Article  Google Scholar 

  119. Cheng, W., Zhu, S., Jiang, F., & Wang, F. (2009). Cerium conversion coatings for AZ91D magnesium alloy in ethanol solution and its corrosion resistance. Corrosion Science, 51(12), 2916–2923.

    Article  Google Scholar 

  120. Hélène, A., Frateur, I., & Marcus, P. (2008). Corrosion protection of magnesium alloys by cerium, zirconium, and niobium-based conversion coatings. Corrosion Science, 50(7), 1907–1918.

    Article  Google Scholar 

  121. Oumaïma, G., Thomas, S., Smith, C., & Birbilis, N. (2018). Chromate replacement: what does the future hold? Npj Materials Degradation, 2, 12–12.

    Article  Google Scholar 

  122. Yun-Jung, B., & Kim, M. H. (2008). Manganese supplementation improves mineral density of the spine and femur and serum osteocalcin in rats. Biological Trace Element Research, 124, 28–34.

    Article  Google Scholar 

  123. Zimmermann, D., Munoz, A. G., & Schultze, J. W. (2005). Formation of Zn-Ni alloys in the phosphating of Zn layers. Surface and Coatings Technology, 197(2-3), 260–269.

    Article  Google Scholar 

  124. Hsiang-Yu, S., & Lin, C. S. (2014). Effect of additives on the properties of phosphate conversion coating on electrogalvanized steel sheet. Corrosion Science, 83, 137–146.

    Article  Google Scholar 

  125. Wolpers, M., & Angeli, J. (2001). Activation of galvanized steel surfaces be- fore zinc phosphating-XPS and GDOES investigations. Applied Surface Science, 179(1-4), 281–291.

    Article  Google Scholar 

  126. Lins, V. D. F. C., de Andrade Reis, G. F., de Araujo, C. R., & Matencio, T. (2006). Electrochemical impedance spectroscopy and linear polarization applied to evaluation of porosity of phosphate conversion coatings on electrogalvanized steels. Applied Surface Science, 253(5), 2875–2884.

    Article  Google Scholar 

  127. Per-Erik, T. (1990). The mechanism of chemical activation with titanium phosphate colloids in the formation of zinc phosphate conversion coatings. Colloids and Surfaces, 49, 373–383.

    Article  Google Scholar 

  128. Cheng-Yang, T., Liu, J. S., Chen, P. L., & Lin, C. S. (2010). Effect of Mg2+ on the microstructure and corrosion resistance of the phosphate conversion coating on hot-dip galvanized sheet steel. Corrosion Science, 52(12), 3907–3916.

    Article  Google Scholar 

  129. Akhtar, A. S., Susac, D., Glaze, P., Wong, K. C., Wong, P. C., & Mitchell, K. A. R. (2004). The effect of Ni2+ on zinc phosphating of 2024-T3 Al alloy. Surface and Coatings Technology, 187(2-3), 208–215.

    Article  Google Scholar 

  130. Akhtar, A. S., Wong, K. C., Wong, P. C., & Mitchell, K. A. R. (2007). Effect of Mn2+ additive on the zinc phosphating of 2024-Al alloy. Thin Solid Films, 515, 7899–7905.

    Article  Google Scholar 

  131. Tatsuo, I., Miura, A., Kajita, K., Matsumoto, M., Sugiyama, C., Matsubara, K., et al. (2007). Effect of dehydroepiandrosterone on insulin sensitivity in Otsuka Long-Evans Tokushima-fatty rats. Acta Diabetologica, 44, 219–226.

    Article  Google Scholar 

  132. Bi-Lan, L., Lu, J. T., & Kong, G. (2008). Synergistic corrosion protection for galvanized steel by phosphating and sodium silicate post-sealing. Surface and Coatings Technology, 202(9), 1831–1838.

    Article  Google Scholar 

  133. Bi-Lan, L., Lu, J. T., & Kong, G. (2008). Effect of molybdate post-sealing on the corrosion resistance of zinc phosphate coatings on hot-dip galvanized steel. Corrosion Science, 50(4), 962–967.

    Article  Google Scholar 

  134. Zhang, X., Den, C. V., Bos, W. G., Sloof, A., Hovestad, H., De Terryn, J. H. W., et al. (2005). Comparison of the morphology and corrosion performance of Cr (VI)-and Cr (III)-based conversion coatings on zinc. Surface and Coatings Technology, 199(1), 92–104.

    Article  Google Scholar 

  135. Gigandet, M. P., Faucheu, J., & Tachez, M. (1997). Formation of black chromate conversion coatings on pure and zinc alloy electrolytic deposits: Role of the main constituents. Surface and Coatings Technology, 89(3), 285–291.

    Article  Google Scholar 

  136. Bellezze, T., Roventi, G., & Fratesi, R. (2002). Electrochemical study on the corrosion resistance of Cr III-based conversion layers on zinc coatings. Surface and Coatings Technology, 155(2-3), 221–230.

    Article  Google Scholar 

  137. Zhao, J., Xia, L., Sehgal, A., Lu, D., Mccreery, R. L., & Frankel, G. S. (2001). Effects of chromate and chromate conversion coatings on corrosion of aluminum alloy 2024-T3. Surface and Coatings Technology, 140(1), 51–57.

    Article  Google Scholar 

  138. Mei-Rong, Y., Lu, J. T., Kong, G., & Che, C. S. (2011). Self healing ability of silicate conversion coatings on hot dip galvanized steels. Surface and Coatings Technology, 205(19), 4507–4513.

    Article  Google Scholar 

  139. Barnes, C., Ward, J. J. B., Sehmbhi, T. S., & Carter, V. E. (1982). Non-chromate passivation treatments for zinc. Transactions of the IMF, 60(1), 45–48.

    Article  Google Scholar 

  140. Niann-Tsyr, W., Lin, C. S., Bai, C. Y., & Ger, M. D. (2008). Structures and characteristics of Cr (III)-based conversion coatings on electrogalvanized steels. Surface and Coatings Technology, 203(3-4), 317–323.

    Article  Google Scholar 

  141. Yu-Tsern, C., Wen, N. T., Chen, W. K., Ger, M. D., Pan, G. T., Thomas, C. K., et al. (2008). The effects of immersion time on morphology and electrochemical properties of the Cr (III)-based conversion coatings on zinc coated steel surface. Corrosion Science, 50(12), 3494–3499.

    Article  Google Scholar 

  142. Keunwoo, V. C., Rao, H. S., & Kwon. (2007). Microstructure and electrochemical characterization of trivalent chromium based conversion coating on zinc. Electrochimica Acta, 52(13), 4449–4456.

    Article  Google Scholar 

  143. Ramezanzadeh, B., Attar, M. M., & Farzam, M. (2010). Corrosion performance of a hot-dip galvanized steel treated by different kinds of conversion coatings. Surface and Coatings Technology, 205(3), 874–884.

    Article  Google Scholar 

  144. Kunitsugu, A. (2001). The inhibition effects of chromate-free, anion inhibitors on corrosion of zinc in aerated 0.5 M NaCl. Corrosion Science, 43(3), 591–604.

    Article  Google Scholar 

  145. Shuang-Hong, Z., Yang, B., Kong, G., & Lu, J. T. (2017). Electrochemical analysis of molybdate conversion coating on hot-dip galvanized steel in various growth stages. Surface and Interface Analysis, 49(8), 698–704.

    Article  Google Scholar 

  146. Walker, D. E., & Wilcox, G. D. (2008). Molybdate based conversion coatings for zinc and zinc alloy surfaces: a review. Transactions of the IMF, 86(5), 251–259.

    Article  Google Scholar 

  147. Magalhaes, A. A. O., Margarit, I. C. P., & Mattos, O. R. (2004). Molybdate conversion coatings on zinc surfaces. Journal of Electroanalytical Chemistry, 572(2), 433–440.

    Article  Google Scholar 

  148. Nazarov, A., Thierry, D., Prosek, T., & Bozec, N. L. (2005). Protective action of vanadate at defected areas of organic coatings on zinc. Journal of the Electrochemical Society, 152(7), 220–220.

    Article  Google Scholar 

  149. Belinda, H., Kevin, L., Ralston, D., & Buchheit, R. G. (2014). Corrosion inhibition of zinc by aqueous vanadate species. Journal of The Electrochemical Society, 161(10), 471–471.

    Article  Google Scholar 

  150. Zhongke, G., Zhang, K., Dang, W., Yang, Y., Wang, Z., Duan, H., et al. (2018). An adaptive optimal-kernel time-frequency representation-based complex network method for characterizing fatigued behavior using the SSVEP- based BCI system. Knowledge-Based Systems, 152, 163–171.

    Article  Google Scholar 

  151. Zhiqiang, G., Zhang, D., Hou, L., Li, X., & Wei, Y. (2019). Understanding of the corrosion protection by V (IV) conversion coatings from a sol-gel perspective. Corrosion Science, 161, 108196.

    Article  Google Scholar 

  152. Zhiqiang, G., Zhang, D., Qiu, X., Jiang, S., Wu, Y., Zhang, Q., et al. (2018). The mechanisms of corrosion inhibition of hot-dip galvanized steel by vanadyl oxalate: A galvanic corrosion investigation supported by XPS. Corrosion Science, 142, 153–160.

    Article  Google Scholar 

  153. Zhongli, Z., Li, N., Li, D., Liu, H., & Mu, S. (2011). A vanadium-based conversion coating as chromate replacement for electrogalvanized steel substrates. Journal of Alloys and Compounds, 509(2), 503–507.

    Article  Google Scholar 

  154. Olivier, M., Lanzutti, A., Motte, C., & Fedrizzi, L. (2010). Influence of oxidizing ability of the medium on the growth of lanthanide layers on galvanized steel. Corrosion Science, 52(4), 1428–1439.

    Article  Google Scholar 

  155. Machkova, M., Matter, E. A., Kozhukharov, S., & Kozhukharov, V. (2013). Effect of the anionic part of various Ce (III) salts on the corrosion inhibition efficiency of AA2024 aluminium alloy. Corrosion Science, 69, 396–405.

    Article  Google Scholar 

  156. Montemor, M. F., Simões, A. M., & Ferreira, M. G. S. (2001). Composition and behaviour of cerium films on galvanised steel. Progress in Organic Coatings, 43(4), 274–281.

    Article  Google Scholar 

  157. Arenas, M. A., & Damborenea, J. J. D. (2004). Surface characterisation of cerium layers on galvanised steel. Surface and Coatings Technology, 187(2-3), 320–325.

    Article  Google Scholar 

  158. Kunitsugu, A. (2001). Treatment of zinc surface with cerium (III) nitrate to prevent zinc corrosion in aerated 0.5 M NaCl. Corrosion Science, 43(11), 2201–2215.

    Article  Google Scholar 

  159. Kunitsugu, A. (2005). A self-healing protective film prepared on zinc by treatment in a Ce (NO3) 3 solution and modification with Ce (NO3) 3. Corrosion Science, 47(5), 1285–1298.

    Article  Google Scholar 

  160. Shuang-Hong, Z., Kong, G., Lu, J. T., Chun-Shan, C., & Liu, L. Y. (2014). Growth behavior of lanthanum conversion coating on hot-dip galvanized steel. Surface and Coatings Technology, 259, 654–659.

    Article  Google Scholar 

  161. Montemor, M. F., Simões, A. M., & Ferreira, M. G. S. (2002). Composition and corrosion behaviour of galvanised steel treated with rare-earth salts: The effect of the cation. Progress in Organic Coatings, 44(2), 111–120.

    Article  Google Scholar 

  162. Kong, G., Lingyan, L. I. U., Jintang, L., Chunshan, C. H. E., & Zhong, Z. (2010). Study on lanthanum salt conversion coating modified with citric acid on hot dip galvanized steel. Journal of Rare Earths, 28(3), 461–465.

    Article  Google Scholar 

  163. Dihua, W., Tang, X., Qiu, Y., Gan, F., & Chen, G. Z. (2005). A study of the film formation kinetics on zinc in different acidic corrosion inhibitor solutions by quartz crystal microbalance. Corrosion Science, 47(9), 2157–2172.

    Article  Google Scholar 

  164. Jaekyu, M., Park, J. H., Sohn, H. K., & Park, J. M. (2012). Synergistic effect of potassium metal siliconate on silicate conversion coating for corrosion protection of galvanized steel. Journal of Industrial and Engineering Chemistry, 18(2), 655–660.

    Article  Google Scholar 

  165. Shuang-Hong, Z., Kong, G., Sun, Z. W., Chun-Shan, C., & Lu, J. T. (2016). Effect of formulation of silica-based solution on corrosion resistance of silicate coating on hot-dip galvanized steel. Surface and Interface Analysis, 48(3), 132–138.

    Article  Google Scholar 

  166. Mei-Rong, Y., Lu, J. T., & Kong, G. (2010). Effect of SiO2: Na2O molar ratio of sodium silicate on the corrosion resistance of silicate conversion coatings. Surface and Coatings Technology, 204(8), 1229–1235.

    Article  Google Scholar 

  167. Jamali, F., Danaee, I., & Zaarei, D. (2015). Effect of nano-silica on the corrosion behavior of silicate conversion coatings on hot-dip galvanized steel. Materials and Corrosion, 66(5), 459–464.

    Article  Google Scholar 

  168. Zhao, J., Wang, X., Liu, J., Meng, Y., Xu, X., & Tang, C. (2011). Controllable growth of zinc oxide nanosheets and sunflower structures by anodization method. Materials Chemistry and Physics, 126(3), 555–559.

    Article  Google Scholar 

  169. Hu, Z., Chen, Q., Li, Z., Yu, Y., & Peng, L. M. (2010). Large-scale and rapid synthesis of ultralong ZnO nanowire films via anodization. The Journal of Physical Chemistry C, 114(2), 881–889.

    Article  Google Scholar 

  170. Kim, S. J., & Choi, J. (2008). Self-assembled arrays of ZnO stripes by anodization. Electrochemistry Communications, 10(1), 175–179.

    Article  Google Scholar 

  171. Faid, A. Y., & Allam, N. K. (2016). Stable solar-driven water splitting by anodic ZnO nanotubular semiconducting photoanodes. RSC Advances, 6(83), 80221–80225.

    Article  Google Scholar 

  172. Gilani, S., Ghorbanpour, M., & Parchehbaf Jadid, A. (2016). Antibacterial activity of ZnO films prepared by anodizing. Journal of Nanostructure in Chemistry, 6, 183–189.

    Article  Google Scholar 

  173. Pesode, P. A., & Barve, S. B. (2021). Recent advances on the antibacterial coating on titanium implant by micro-Arc oxidation process. Materials Today: Proceedings, 47, 5652–5662.

    Google Scholar 

  174. Lyu, H., He, Z., Chan, Y. K., He, X., Yu, Y., & Deng, Y. (2019). Hierarchical ZnO nanotube/graphene oxide nanostructures endow pure Zn implant with synergistic bactericidal activity and osteogenicity. Industrial & Engineering Chemistry Research, 58(42), 19377–19385.

    Article  Google Scholar 

  175. Li, G., Cao, H., Zhang, W., Ding, X., Yang, G., Qiao, Y., et al. (2016). Enhanced osseointegration of hierarchical micro/nanotopographic titanium fabricated by microarc oxidation and electrochemical treatment. ACS Applied Materials & Interfaces, 8(6), 3840–3852.

    Article  Google Scholar 

  176. Li, Z. Y., Cai, Z. B., Cui, Y., Liu, J. H., & Zhu, M. H. (2019). Effect of oxidation time on the impact wear of micro-arc oxidation coating on aluminum alloy. Wear, 426, 285–295.

    Article  Google Scholar 

  177. Tang, H., & Gao, Y. (2016). Preparation and characterization of hydroxyapatite containing coating on AZ31 magnesium alloy by micro-arc oxidation. Journal of Alloys and Compounds, 688, 699–708.

    Article  Google Scholar 

  178. Yu, C., Cui, L. Y., Zhou, Y. F., Han, Z. Z., Chen, X. B., Zeng, R. C., ... & Guan, S. K. (2018). Self-degradation of micro-arc oxidation/chitosan composite coating on Mg-4Li-1Ca alloy. Surface and Coatings Technology, 344, 1-11.

  179. Pesode, P., & Barve, S. (2023). A review—metastable β titanium alloy for biomedical applications. Journal of Engineering and Applied Science, 70(1), 1–36.

    Article  Google Scholar 

  180. Yue, R., Niu, J., Li, Y., Ke, G., Huang, H., Pei, J., & Yuan, G. (2020). In vitro cytocompatibility, hemocompatibility and antibacterial properties of biodegradable Zn-Cu-Fe alloys for cardiovascular stents applications. Materials Science and Engineering: C, 113, 111007.

    Article  Google Scholar 

  181. Yuan, W., Li, B., Chen, D., Zhu, D., Han, Y., & Zheng, Y. (2018). Formation mechanism, corrosion behavior, and cytocompatibility of microarc oxidation coating on absorbable high-purity zinc. ACS Biomaterials Science & Engineering, 5(2), 487–497.

    Article  Google Scholar 

  182. Hausmann, D. M., Kim, E., Becker, J., & Gordon, R. G. (2002). Atomic layer deposition of hafnium and zirconium oxides using metal amide precursors. Chemistry of Materials, 14(10), 4350–4358.

    Article  Google Scholar 

  183. George, S. M. (2010). Atomic layer deposition: An overview. Chemical Reviews, 110(1), 111–131.

    Article  Google Scholar 

  184. Yang, Q., Yuan, W., Liu, X., Zheng, Y., Cui, Z., Yang, X., ... & Wu, S. (2017). Atomic layer deposited ZrO2 nanofilm on Mg-Sr alloy for enhanced corrosion resistance and biocompatibility. Acta Biomaterialia, 58, 515-526.

  185. Yuan, W., Xia, D., Zheng, Y., Liu, X., Wu, S., Li, B., ... & Zhou, Y. (2020). Controllable biodegradation and enhanced osseointegration of ZrO2-nanofilm coated Zn-Li alloy: in vitro and in vivo studies. Acta Biomaterialia, 105, 290-303.

  186. Jin, W., Zhou, H., Li, J., Ruan, Q., Li, J., Peng, X., ... & Chu, P. K. (2020). Zirconium-based nanostructured coating on the Mg-4Y-3RE alloy for corrosion retardation. Chemical Physics Letters, 756, 137824.

  187. Bolbasov, E. N., Maryin, P. V., Stankevich, K. S., Kozelskaya, A. I., Shesterikov, E. V., Khodyrevskaya, Y. I., ... & Tverdokhlebov, S. I. (2018). Surface modification of electrospun poly-(L-lactic) acid scaffolds by reactive magnetron sputtering. Colloids and Surfaces B: Biointerfaces, 162, 43-51.

  188. Peng, F., Lin, Y., Zhang, D., Ruan, Q., Tang, K., Li, M., ... & Zhang, Y. (2021). Corrosion behavior and biocompatibility of diamond-like carbon-coated zinc: an in vitro study. ACS Omega, 6(14), 9843-9851.

  189. Yan Guo, C., Tin Hong Tang, A., & Pekka Matinlinna, J. (2012). Insights into surface treatment methods of titanium dental implants. Journal of Adhesion Science and Technology, 26(1-3), 189–205.

    Article  Google Scholar 

  190. Guo, C. Y., Matinlinna, J. P., & Tang, A. T. H. (2012). A novel effect of sandblasting on titanium surface: Static charge generation. Journal of Adhesion Science and Technology, 26(23), 2603–2613.

    Article  Google Scholar 

  191. Li, P., Qian, J., Zhang, W., Schille, C., Schweizer, E., Heiss, A., & Geis-Gerstorfer, J. (2021). Improved biodegradability of zinc and its alloys by sandblasting treatment. Surface and Coatings Technology, 405, 126678.

    Article  Google Scholar 

  192. Hongbo, Y., Zhang, F., Qian, J., Chen, J., & Ge, J. (2018). Restenosis in Magmaris stents due to significant collapse. JACC: Cardiovascular Interventions, 11(10), 77–78.

    Google Scholar 

  193. Yohei, S., Onuma, Y., Collet, C., Tenekecioglu, E., Virmani, R., Kleiman, N. S., et al. (2017). Bioresorbable scaffold: The emerging reality and future directions. Circulation Research, 120(8), 1341–1352.

    Article  Google Scholar 

  194. Pei-Jiang, W., Ferralis, N., Conway, C., Grossman, J. C., & Edelman, E. R. (2018). Strain-induced accelerated asymmetric spatial degradation of polymeric vascular scaffolds. Proceedings of the National Academy of Sciences, 115(11), 2640–2645.

    Article  Google Scholar 

  195. Kyohei, Y., Ueki, Y., Souteyrand, G., Daemen, J., Wiebe, J., Nef, H., et al. (2017). Mechanisms of very late bioresorbable scaffold thrombosis: The INVEST registry. Journal of the American College of Cardiology, 70(19), 2330–2344.

    Article  Google Scholar 

  196. Hualan, J., Zhao, S., Guillory, R., Bowen, P. K., Yin, Z., Griebel, A., et al. (2018). Novel high-strength, low-alloys Zn-Mg (< 0.1 wt% Mg) and their arterial biodegradation. Materials Science and Engineering: C, 84, 67–79.

    Article  Google Scholar 

  197. Pesode, P., & Barve, S. (2022). Additive manufacturing of metallic biomaterials and its biocompatibility. Materials Today: Proceedings.

  198. Gefen, A. (2002). Optimizing the biomechanical compatibility of orthopedic screws for bone fracture fixation. Medical Engineering & Physics, 24(5), 337–334.

    Article  Google Scholar 

  199. Pesode, P., & Barve, S. (2021). Surface modification of titanium and titanium alloy by plasma electrolytic oxidation process for biomedical applications: A review. Materials Today: Proceedings, 46, 594–602.

    Google Scholar 

  200. Kim, H. J., Zhang, J., Yoon, R. H., & Gandour, R. (2004). Development of environmentally friendly nonchrome conversion coating for electrogalvanized steel. Surface and Coatings Technology, 188, 762–767.

    Article  Google Scholar 

  201. Zaferani, S. H., Peikari, M., Zaarei, D., Danaee, I., Fakhraei, J. M., & Mohammadi, M. (2013). Using silane films to produce an alternative for chromate conversion coatings. Corrosion, 69(4), 372–387.

    Article  Google Scholar 

  202. Fihri, A., Bovero, E., Al-Shahrani, A., Al-Ghamdi, A., & Alabedi, G. (2017). Recent progress in superhydrophobic coatings used for steel protection: A review. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520, 378–390.

    Article  Google Scholar 

  203. Raj, V., & Raj, R. M. (2016). Self-cleaning performance of superhydrophobic hybrid nanocomposite coatings on Al with excellent corrosion resistance. Materials Science and Engineering: B, 214, 87–97.

    Article  Google Scholar 

  204. Ulaeto, S. B., Rajan, R., Pancrecious, J. K., Rajan, T. P. D., & Pai, B. C. (2017). Developments in smart anticorrosive coatings with multifunctional characteristics. Progress in Organic Coatings, 111, 294–314.

    Article  Google Scholar 

  205. Gao, Z., Zhang, D., Li, X., Jiang, S., & Zhang, Q. (2018). Current status, opportunities and challenges in chemical conversion coatings for zinc. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 546, 221–236.

    Article  Google Scholar 

  206. Li, B. J., & Chao, C. G. (1999). Aging kinetics of heat-treated Zn-4Al-3Cu alloy. Scripta Materialia, 41(2), 143–147.

    Article  Google Scholar 

  207. Werkhoven, R. J., Sillekens, W. H., & Van Lieshout, J. B. J. M. (2016). Processing aspects of magnesium alloy stent tube (pp. 419–424). Springer International Publishing.

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to School of Mechanical Engineering, MIT WPU Pune, for its support. We also extend our heartfelt thanks to Dean Faculty of Engineering and Technology, MIT WPU Pune, who provided valuable guidance and support throughout this project. We would also like to acknowledge the help and support received from MIT WPU Pune for providing the necessary resources, infrastructure, and technical support required for this research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, data curation, investigation, methodology, writing original draft, writing review, and editing were done by PP. SB supervised and administrated the article writing work. Also, SB provided the necessary resources required to complete the article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pralhad Pesode.

Ethics declarations

Ethics Approval and Consent to Participate

“Not applicable.” For the current work, the authors have not conducted any animal or human trials.

Consent for Publication

“Not applicable.” Individual data or information has not been included by the authors for the current work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pesode, P., Barve, S. Surface Modification of Biodegradable Zinc Alloy for Biomedical Applications. BioNanoSci. 13, 1381–1398 (2023). https://doi.org/10.1007/s12668-023-01139-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01139-5

Keywords

Navigation