Skip to main content
Log in

Analytical assessment of Schottky diodes based on CdS/Si heterostructure: current, capacitance, and conductance analysis using TCAD

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

An investigation was conducted on the characteristics of current and voltage in a heterostructure setup comprising a CdS/Silicon Schottky barrier diode. The investigation encompassed a broad spectrum of temperature conditions, spanning from 200 to 400 K. Based on the simulation results, the saturation current, ideality factor, series resistance measurement, and Schottky barrier height demonstrated favorable outcomes. Based on this premise, empirical evidence demonstrates that an increase in temperatures leads to a decrease in the ideality factor, accompanied by an increase in the barrier height. The temperature alterations within the implemented heterostructure lead to a Schottky barrier height ranging from 1.2 to 1.5 eV. At temperatures below 300 K, the height of the barrier exhibited slight irregularity, which became more pronounced with increasing temperature. Furthermore, an analysis was conducted on the C–V and G–V characteristics of the CdS/Si heterostructure. Various analyses of C–V and G–V have been conducted in order to gain a comprehensive understanding of the structure. A C–V analysis was conducted for frequencies of 1 kHz and 1 MHz, while also considering temperature variations. The G–V experiment encompassed a frequency range of 1 KHz to 1 MHz, as well as variations in temperature. Throughout the investigation, various factors such as effective barrier height and built-in voltage were identified. Based on the results obtained from the investigation, it has been determined that the effective barrier height at room temperature is 0.98 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A van der Ziel Solid state physical Electronics. Prentice-Hall Electrical Engineering Series, 2nd edn. (Englewood Cliffs, N.J.: Prentice-Hall) (1968)

    Google Scholar 

  2. S.S. Cohen. Metal-semiconductor contacts and devices (2014). http://search.ebscohost.com/login.aspx?direct=true &scope=site &db=nlebk &AN=922607

  3. C Crowell, H Shore and E LaBate J. Appl. Phys. 36 12 3843 (1965)

    Article  ADS  Google Scholar 

  4. W Schottky Naturwissenschaften 26 843 (1938)

    Article  ADS  Google Scholar 

  5. N.F. Mott, in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 34 (Cambridge University Press, 1938), vol. 34, pp. 568–572

  6. A Akkaya, T Karaaslan, M Dede, H Çetin and E Ayyıldız Thin Solid Films 564 367 (2014)

    Article  ADS  Google Scholar 

  7. X Yu, X Wang, F Zhou, J Qu and J Song Adv. Func. Mater. 31 2104260 (2021)

    Article  Google Scholar 

  8. W Duncan and A Smellie J. Appl. Phys. 49 4098 (1978)

    Article  ADS  Google Scholar 

  9. S Gupta, A Kumar, S Mukherjee, K K Kushwah, S K Mahobia, P Patharia, A Kushwaha, D Yadav, U K Dwivedi, S Kumar and R K Choubey Phys. B 657 414831 (2023)

    Article  Google Scholar 

  10. A Kumar, S Mukherjee, H Sharma, D K Rana, A Kumar, R Kumar and R K Choubey Mater. Sci. Semicond. Process. 155 107226 (2023)

    Article  Google Scholar 

  11. A Kumar, S Mukherjee, H Sharma, U K Dwivedi, S Kumar, R K Gangwar and R K Choubey Phys. Scr. 97 045819 (2022)

    Article  ADS  Google Scholar 

  12. A Kumar, D Pednekar, S Mukherjee and R K Choubey J. Mater. Sci.: Mater. Electron. 31 17055 (2020)

    Google Scholar 

  13. S S Yesilkaya, U Ulutas and H M Abd Alqader Mater. Lett. 288 129347 (2021)

    Article  Google Scholar 

  14. J Ran, R Chen, R He, X Ji, J Yang, J Wang, J Li and T Wei Semicond. Sci. Technol. 37 125001 (2022)

    Article  ADS  Google Scholar 

  15. J Jadwiszczak, J Sherman, D Lynall, Y Liu, B Penkov, E Young, R Keneipp, M Drndic, J C Hone and K L Shepard ACS Nano 16 1639 (2022)

    Article  Google Scholar 

  16. F Hartmann Nuclear Instruments and Methods in Physics Research Section A: Accelerators Spectrom. Detectors Associat. Equip. 666 25 (2012)

    Article  Google Scholar 

  17. K Choy and B Su Thin Solid Films 388 9 (2001)

    Article  ADS  Google Scholar 

  18. P Parameshwari, B Shrisha, P S Bhat and K G Naik Mater. Today Proc. 3 1620 (2016)

    Article  Google Scholar 

  19. A Ashok, G Regmi, A Romero-Núñez, M Solis-López, S Velumani and H Castaneda J. Mater. Sci.: Mater. Electron. 31 7499 (2020)

    Google Scholar 

  20. S K Nadikatla, V B Chintada, T R Gurugubelli and R Koutavarapu Molecules 28 4277 (2023)

    Article  Google Scholar 

  21. J Hiie, T Dedova, V Valdna and K Muska Thin Solid Films 511 443 (2006)

    Article  ADS  Google Scholar 

  22. D Li, T Wang, W Lin, Y Zhu, Q Wang, X Lv, L Li and G Zou Diam. Relat. Mater. 128 109300 (2022)

    Article  ADS  Google Scholar 

  23. Y. Yao, R. Gangireddy, J. Kim, K.K. Das, R.F. Davis, L.M. Porter, J. Vac. Sci. Technol. B 35 (2017)

  24. Z Hu, Q Feng, Z Feng, Y Cai, Y Shen, G Yan, X Lu, C Zhang, H Zhou, J Zhang and Y Hao Nanoscale Res. Lett. 14 2 (2019)

    Article  ADS  Google Scholar 

  25. T. Watahiki, Y. Yuda, A. Furukawa, M. Yamamuka, Y. Takiguchi and S. Miyajima, Appl. Phys. Lett. 111 (2017)

  26. X Lu, X Zhou, H Jiang, K W Ng, Z Chen, Y Pei, K M Lau and G Wang IEEE Electron Device Lett. 41 449 (2020)

    Article  ADS  Google Scholar 

  27. H. Gong, X. Chen, Y. Xu, F.F. Ren, S. Gu and J. Ye, Appl. Phys. Lett. 117 (2020)

  28. B. Pandit, J. Kim and J. Cho, AIP Adv. 11 (2021)

  29. T Sun, X Luo, J Wei, C Yang and B Zhang Nanoscale Res. Lett. 15 1 (2020)

    Article  ADS  Google Scholar 

  30. Y Atasoy, M Olgar and E Bacaksiz J. Mater. Sci.: Mater. Electron. 30 10435 (2019)

    Google Scholar 

  31. T. Atlas, CA USA (2016)

  32. E. Rhoderick and R. Williams, Metal-semiconductor Contacts. Monographs in electrical and electronic engineering (Clarendon Press, 1988)

  33. S.M. Sze, Y. Li and K.K. Ng, Physics of semiconductor devices (John wiley & sons, 2021)

  34. C. Wilmsen, in Physics and Chemistry of III-V Compound Semiconductor Interfaces (Springer, 1985), pp. 403–462

  35. S Cheung and N Cheung Appl. Phys. Lett. 49 85 (1986)

    Article  ADS  Google Scholar 

  36. A . Gümüş, A . Türüt and N . Yalçin Temperature dependent barrier characteristics of CrNiCo alloy Schottky contacts on<i>n</i> -type molecular-beam epitaxy GaAs J. Appl. Phys. 91 245–250 (2002). https://doi.org/10.1063/1.1424054

  37. S. Nayak, S. Acharya, M. Baral, M. Garbrecht, T. Ganguli, S. Shivaprasad and B. Saha, Appl. Phys. Lett. 115 (2019)

  38. I Lashkevych, J Velázquez, O Y Titov and Y G Gurevich J. Electron. Mater. 47 3189 (2018)

    Article  ADS  Google Scholar 

  39. J Watson and G Castro J. Mater. Sci. Mater. Electron. 26 9226 (2015)

    Article  Google Scholar 

  40. S J Moloi and M McPherson Radiat. Phys. Chem. 85 73 (2013)

    Article  ADS  Google Scholar 

  41. E Uğurel, Ş Aydoğan, K Şerifoğlu and A Türüt Microelectron. Eng. 85 2299 (2008)

    Article  Google Scholar 

  42. W J Lee, G A Umana-Membreno, J Dell and L Faraone IEEE J. Photovolt. 5 1783 (2015)

    Article  Google Scholar 

  43. S K Al-Ani, R A Ismail and H F Al-Ta’ay J. Mater. Sci. Mater. Electron. 17 819 (2006)

    Article  Google Scholar 

  44. O A Hammadi and N E Naji Opt. Quant. Electron. 48 1 (2016)

    Article  Google Scholar 

  45. E H Hussein, N J Mohammed, A H A Al-Fouadi, K N Abbas, J S Alikhan, K Maksimova and A Y Goikhman Mater. Lett. 254 282 (2019)

    Article  Google Scholar 

  46. V Bilgin, E Sarica, B Demirselcuk and K Ertürk Phys. B 599 412499 (2020)

    Article  Google Scholar 

  47. S M Ali, M AlGarawi, W Farooq, M Atif, A Hanif, M A AlMutairi and M A Shar Mater. Chem. Phys. 240 122243 (2020)

    Article  Google Scholar 

  48. S Srivastava, S Singh and V K Singh Opt. Mater. 111 110687 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaikumar Rajendran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajendran, J., Raju, L. & Bojaraj, L. Analytical assessment of Schottky diodes based on CdS/Si heterostructure: current, capacitance, and conductance analysis using TCAD. Indian J Phys (2024). https://doi.org/10.1007/s12648-023-03052-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-023-03052-9

Keywords

Navigation