Skip to main content
Log in

Geometries, electronic structures and vibrational spectral studies of 4-aminophthalonitrile using quantum chemical calculations for dye sensitized solar cells

  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The geometries, electronic structures, polarizabilities, and hyperpolarizabilities of organic dye sensitizer 4-Aminophthalonitrile were studied based on Hartee-Fock (HF) and Density Functional Theory (DFT) using the hybrid functional B3LYP. Ultraviolet-visible (UV-Vis) spectrum was investigated by Time Dependent DFT (TD-DFT). Features of the electronic absorption spectrum in the visible and near-UV regions were assigned based on TD-DFT calculations. The absorption bands have been assigned to nπ* transitions. Calculated results suggest that the three excited states with the lowest excited energies in 4-Aminophthalonitrile is due to photoinduced electron transfer processes. The interfacial electron transfer between semiconductor TiO2 electrode and dye sensitizer is due to an electron injection process from excited dye to the semiconductor’s conduction band. The role of cyanide and amine group in 4-Aminophthalonitrile geometries, electronic structures, and vibrational spectra were compared with experimental values and in view of these results, it was concluded that 4-Aminophthalonitrile used in Dye Sensitized Solar Cells (DSSC) gives a good conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B O’Regan and M Gratzel Nature 353 737 (1991)

    Article  ADS  Google Scholar 

  2. M Gratzel Nature 414 338 (2001)

    Article  ADS  Google Scholar 

  3. N G Park and K Kim Phys. Status Solidi a. 205 1895 (2008)

    Article  ADS  Google Scholar 

  4. Y Chiba, A Islam, Y Watanabe, R Komiya, N Koide and L Han Jpn. J. Appl. Phys. 45 L638 (2006)

    Article  ADS  Google Scholar 

  5. K Hara, M Kurashige, Y Dan-oh, C Kasada, A Shinpo, S Suga, K Sayama and H Arakawa New J. Chem. 27 783 (2003)

    Article  Google Scholar 

  6. T Kitamura, M Ikeda, K Shigaki, T Inoue, N A Anderson, X Ai, T Lian and S Yanagida Chem. Mater. 16 1806 (2004)

    Article  Google Scholar 

  7. T Horiuchi, H Miura, K Sumioka and S Uchida J. Am. Chem. Soc. 126 12218 (2004)

    Article  Google Scholar 

  8. W M Campbell, A K Burrell, D L Officer and K W Jolley Coord. Chem. ReV. 248 1363 (2004)

    Article  Google Scholar 

  9. K R J Thomas, J T Lin, Y C Hsu and K C Ho Chem. Commun. 32 4098 (2005)

    Article  Google Scholar 

  10. D P Hagberg, T Edvinsson, T Marinado, G Boschloo, A Hagfeldt and L Sun Chem. Commun. 21 2245 (2006)

    Google Scholar 

  11. S L Li, K J Jiang, K F Shao and L M Yang Chem. Commun. 26 2792 (2006)

    Article  Google Scholar 

  12. N Koumura, Z S Wang, S Mori, M Miyashita, E Suzuki and K Hara J. Am. Chem. Soc. 128 14256 (2006)

    Article  Google Scholar 

  13. S Kim, J W Lee, S O Kang, J Ko, J H Yum, S Fantacci, F De Angellis, D Di Censo, M K Nazeeruddin and M J Gratzel, Am. Chem. Soc., 128 16701 (2006)

    Article  Google Scholar 

  14. Z S Wang, Y Cui, K Hara, Y Dan-oh, C Kasada and A Shinpo AdV. Mater. 19 1138 (2007)

    Article  Google Scholar 

  15. T Edvinsson, C Li, N Pschirer, J Schoneboom, F Eickemeyer, R Sens, G Boschloo, A Herrmann, K Mullen and A Hagfeldt J. Phys. Chem. C 111 15137 (2007)

    Google Scholar 

  16. M Wang, M Xu, D Shi, R Li, F Gao, G Zhang, Z Yi, R Humphry-Baker, P Wang, S M Zakeeruddin and M Gratzel AdV. Mater. 20 4460 (2008)

    Article  Google Scholar 

  17. D Shi, N Pootrakuchote, Z Yi, M Xu, S M Zakeeruddin, M Gratzel and P J Wang Phys. Chem. C, 112 17478 (2008)

    Article  Google Scholar 

  18. G Zhou, N Pschirer, J C Schoneboom, F Eickemeyer, M Baumgarten and K Mullen Chem. Mater. 20 1808 (2008)

  19. J T Lin, P C Chen, Y S Yen, Y C Hsu, H H Chou and M C P Yeh Org. Lett., 11 97 (2009)

  20. G Zhang, Y Bai, R Li, D Shi, S Wenger, S M Zakeeruddin, M Gratzel and P Wang Energy Environs. Sci. 2 92 (2009)

    Article  Google Scholar 

  21. M Xu, S Wenger, H Bara, D Shi, R Li, Y Zhou, S M Zakeeruddin, M Gratzel and P Wang J. Phys. Chem. C, 113 2966 (2009)

    Google Scholar 

  22. G K Solanki, S Goyal, S K Arora, D B Patel and M K Agarwal Indian Journal of Physics 83 275 (2009)

    Article  Google Scholar 

  23. X H Zhang, C Li, W B Wang, X X Cheng, X S Wang and B W Zhang J. Mater. Chem. 17 642 (2007)

    Article  Google Scholar 

  24. M Liang, W Xu, F Cai, P Chen and B Peng, J Chen and Z Li J. Phys. Chem. C 111 4465 (2007)

    Article  Google Scholar 

  25. W Xu, B Peng, J Chen, M Liang and F Cai J. Phys. Chem. C 112 874 (2008)

    Article  Google Scholar 

  26. S Ito, H Miura, S Uchida, M Takata, K Sumioka, P Liska, P Comte, P Pechy and M Gratzel Chem. Commun. 46 5194 (2008)

    Article  Google Scholar 

  27. M J Frisch et al, Gaussian 03, Gaussian, Inc., Pittsburgh, PA, (2003).

    Google Scholar 

  28. A D Becke J. Chem. Phys. 98 5648 (1993)

    Article  ADS  Google Scholar 

  29. B Miehlich, A Savin, H Stoll and H Preuss Chem. Phys. Lett. 157 200 (1989)

    Article  ADS  Google Scholar 

  30. C Lee, W. Yang and R G Parr Phys. Rev. B. 37 785 (1988)

    Article  ADS  Google Scholar 

  31. B I Sharma, J Maibam, R S Paul, R K Thapa and R K B Singh Indian Journal of Physics 84 671 (2010)

    Article  Google Scholar 

  32. S Kumar, A K Rai, S B Rai and D K Rai Indian J. Phys. 84 563 (2010)

    Article  ADS  Google Scholar 

  33. C Pal and R J Kshirsagar Indian J. Phys. 84 929 (2010)

    Article  ADS  Google Scholar 

  34. V Barone and M Cossi J. Phys. Chem. A 102 1995 (1998)

    Article  Google Scholar 

  35. M Cossi, N Rega, G Scalmani and V Barone J. Comput. Chem. 24 669 (2003)

    Article  Google Scholar 

  36. M K Nazeeruddin, F De Angelis, S Fantacci, A Selloni, G Viscardi, P Liska, S Ito, B Takeru and M Gratzel J. Am. Chem. Soc. 127 16835 (2005)

    Article  Google Scholar 

  37. M J Lundqvist, M Nilsing, P Persson and S Lunell Int. J. Quantum Chem. 106 3214 (2006)

    Article  ADS  Google Scholar 

  38. D F Waston and G J Meyer Annu. Rev. Phys. Chem. 56 119 (2005)

    Article  ADS  Google Scholar 

  39. C R Zhang, H S Chen and G H Wang Chem. Res. Chin. U. 20 640 (2004)

    MathSciNet  Google Scholar 

  40. Y Sun, X Chen, L Sun, X Guo and W Lu Chem. Phys. Lett. 381 397 (2003)

    Article  ADS  Google Scholar 

  41. O Christiansen, J Gauss and J F Stanton Chem. Phys. Lett. 305 147 (1999)

    Article  ADS  Google Scholar 

  42. Z S Wang, Y Y Huang, C H Huang, J Zheng, H M Cheng and S J Tian Synth. Met. 14 201 (2000)

    Article  Google Scholar 

  43. C R Zhang, Y Z Wu, Y H Chen and H S Chen Acta Phys. Chim. Sin. 25 53 (2009)

    Google Scholar 

  44. A Seidl, A Gorling, P Vogl, J A Majewski and M Levy Phys. Rev. B53 3764 (1996)

    ADS  Google Scholar 

  45. K Hara, T Sato, R Katoh, A Furube, Y Ohga, A Shinpo, S Suga, K Sayama, H Sugihara and H Arakawa J. Phys. Chem. B. 107 597 (2003)

    Article  Google Scholar 

  46. C R Zhang, Z J Liu, Y H Chen, H S Chen, Y Z Wu and L H Yuan J. Mol. Struct. 899 86 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Anbarasan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anbarasan, P.M., Senthil Kumar, P., Vasudevan, K. et al. Geometries, electronic structures and vibrational spectral studies of 4-aminophthalonitrile using quantum chemical calculations for dye sensitized solar cells. Indian J Phys 85, 1477–1494 (2011). https://doi.org/10.1007/s12648-011-0167-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-011-0167-7

Keywords

Navigation