Skip to main content

Advertisement

Log in

Neurophysiopathological Aspects of Paclitaxel-induced Peripheral Neuropathy

  • Review Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Chemotherapy is widely used as a primary treatment or adjuvant therapy for cancer. Anti-microtubule agents (such as paclitaxel and docetaxel) are used for treating many types of cancer, either alone or in combination. However, their use has negative consequences that restrict the treatment's ability to continue. The principal negative effect is the so-called chemotherapy-induced peripheral neuropathy (CIPN). CIPN is a complex ailment that depends on diversity in the mechanisms of action of the different chemotherapy drugs, which are not fully understood. In this paper, we review several neurophysiological and pathological characteristics, such as morphological changes, changes in ion channels, mitochondria and oxidative stress, cell death, changes in the immune response, and synaptic control, as well as the characteristics of neuropathic pain produced by paclitaxel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

AIDS:

Acquired Immunodeficiency Syndrome

ATF3:

Activating Transcription Factor 3

BMI:

Body Mass Index

BSA:

Body Surface Area

CGRP:

Calcitonin Gene-Related Peptide

CIPN:

Chemotherapy-induced peripheral neuropathy

CX3CL1:

Chemokine (C-X3-C motif) Ligand 1

DRG:

Dorsal root ganglion

EAAT:

Excitatory Amino Acid Transporter

EB3:

Ending Binding Protein 3

ERK:

Extracellular Signal-Regulated Kinase

GABA:

Gamma-aminobutyric acid

GFAP:

Glial fibrillary acidic protein

GM-CSF:

Granulocyte–macrophage colony-stimulating factor

GS:

Glutamine Synthase

HIF-I:

Hypoxia-inducible factor 1 signaling pathway

IL-10:

Interleukin 10

IL-12p70:

Interleukin 12, p70

IL-1β:

Interleukin 1-β

IL-6:

Interleukin 6

lncRNA:

Long noncoding RNA

MAPK:

Mitogen Activated Protein Kinase

MCP-1:

Monocyte chemoattractant protein 1

mPTP:

Mitochondrial Protein Transition Pore

mRNA:

Messenger RNA

Nav:

Voltage-gated sodium channel

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NSAID:

Non-Steroid Anti-inflammatory Drug

PAC:

Paclitaxel

P-APS:

Paclitaxel Indiced Acute Pain Syndrome

PAR2:

Tryptase-Activated Receptor 2

PIPN:

Paclitaxel-induced peripheral neuropathy

PKA:

Protein Kinase A

PKC:

Protein Kinase C

RVM:

Rostral Ventromedial Medulla

siRNA:

Small Interfering RNA

TLR4:

Toll-Like Receptor 4

TNF-α:

Tumor Necrosis Factor

TPH:

Tryptophan Hydroxylase

TRP:

Transient Receptor Potential

References

  • Abd-elsayed A, Jackson M, Gu SL, Fiala K, Gu J (2019) Neuropathic pain and Kv7 voltage-gated potassium channels : The potential role of Kv7 activators in the treatment of neuropathic pain. Mol Pain 15:1–8

    Article  Google Scholar 

  • Amir R, Argoff CE, Bennett GJ, Cummins TR, Durieux ME, Gerner P et al (2006) The Role of Sodium Channels in Chronic Inflammatory and Neuropathic Pain. J Pain 7(5):S1-29

    Article  Google Scholar 

  • Amrita S, Hughes TET, Moiseenkova-Bell VY (2018) Transient receptor potential (TRP) channels. Membrane Protein Complexes: Structure and Function 141–65

  • Andoh T, Sakamoto A, Kuraishi Y (2013) Effects of xaliproden, a 5-HT 1A agonist, on mechanical allodynia caused by chemotherapeutic agents in mice. Eur J Pharmacol 721:231–236

    Article  Google Scholar 

  • Andre N, Braguer D, Brasseur G, Goncalves A, Lemesle-Meunier D, Guise S et al (2000) Paclitaxel induces release of cytochrome c from mitochondria isolated from human neuroblastoma cells. Cancer Res 60(19):5349–5353

    Google Scholar 

  • Alessandri-Haber N, Dina OA, Yeh JJ, Parada CA, Reichling DB, Levine JD (2004) Transient Receptor Potential Vanilloid 4 Is Essential in Chemotherapy-Induced Neuropathic Pain in the Rat. J Neurosci 24(18):4444–4452

    Article  Google Scholar 

  • Aromolaran KA, Goldstein PA (2017) Ion channels and neuronal hyperexcitability in chemotherapy-induced peripheral neuropathy: Cause and effect? Mol Pain 13:1–24

    Article  Google Scholar 

  • Ba X, Wang J, Zhou S, Luo X, Peng Y, Yang S et al (2018) Cinobufacini protects against paclitaxel-induced peripheral neuropathic pain and suppresses TRPV1 up-regulation and spinal astrocyte activation in rats. Biomed Pharmacother 108(September):76–84. Available from: https://doi.org/10.1016/j.biopha.2018.09.018

  • Barbuti AM, Chen ZS (2015) Paclitaxel through the ages of anticancer therapy: Exploring its role in chemoresistance and radiation therapy. Cancers (basel) 7(4):2360–2371

    Article  Google Scholar 

  • Benbow SJ, Cook BM, Reifert J, Wozniak KM, Slusher BS, Littlefield BA et al (2016) Effects of Paclitaxel and Eribulin in Mouse Sciatic Nerve: A Microtubule-Based Rationale for the Differential Induction of Chemotherapy-Induced Peripheral Neuropathy. Neurotox Res

  • Benbow SJ, Wozniak KM, Kulesh B, Savage A, Slusher BS, Littlefield BA et al (2017) Microtubule-Targeting Agents Eribulin and Paclitaxel Differentially Affect Neuronal Cell Bodies in Chemotherapy-Induced Peripheral Neuropathy. Neurotox Res 32(1):151–162

    Article  Google Scholar 

  • Bennett DL, Clark XAJ, Huang J, Waxman SG, Dib-Hajj SD (2019) The role of voltage-gated sodium channels in pain signaling. Physiol Rev 99(2):1079–1151

    Article  Google Scholar 

  • Bennett GJ, Liu GK, Xiao WH, Jin HW, Siau C (2011) Terminal arbor degeneration - a novel lesion produced by the antineoplastic agent paclitaxel. Eur J Neurosci 33(9):1667–1676

    Article  Google Scholar 

  • Bobylev I, Joshi AR, Barham M, Ritter C, Neiss WF, Höke A et al (2015) Paclitaxel inhibits mRNA transport in axons. Neurobiol Dis 82:321–331

    Article  Google Scholar 

  • Bosanac T, Hughes RO, Engber T, Devraj R, Brearley A, Danker K et al (2021) Pharmacological SARM1 inhibition protects axon structure and function in paclitaxel- induced peripheral neuropathy. Brain 144:3226–3238

    Article  Google Scholar 

  • Boyette-davis JA, Cata JP, Driver LC, Novy DM, Bruel BM, Mooring DL et al (2013) Persistent chemoneuropathy in patients receiving the plant alkaloids paclitaxel and vincristine. Cancer Chemother Pharmacol 71(3):619–626

    Article  Google Scholar 

  • Brady BL, Lucci M, Wilson K, Fox KM, Wojtynek JE, Cooper C et al (2021) Chemotherapy-Induced Peripheral Neuropathy in Metastatic Breast Cancer Patients Initiating Intravenous Paclitaxel / nab-Paclitaxel Take-Away Points. Am J Manag Care (Spec. No 1.):SP37–43

  • Braz JM, Wang X, Guan Z, Basbaum AI (2016) Transplant-mediated enhancement of spinal cord GABAergic inhibition reverses paclitaxel-induced mechanical and heat hypersensitivity. Pain 156(6):1084–1091

    Article  Google Scholar 

  • Busserolles J, Tsantoulas C, Eschalier A, Lopez Garcia JA (2016) Potassium channels in neuropathic pain: advances, challenges, and emerging ideas. Pain 157(2):S7-14

    Article  Google Scholar 

  • Canta A, Pozzi E, Carozzi VA (2015) Mitochondrial dysfunction in chemotherapy-induced peripheral neuropathy (CIPN). Toxics 3(2):198–223

    Article  Google Scholar 

  • Cata JP, Weng H, Chen J, Dougherty PM (2006) Altered discharges of spinal wide dynamic range neurons and down-regulation of glutamate transporter expression in rats with paclitaxel-induced hyperalgesia. Neuroscience 138(1):329–338

    Article  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor : a heat-activated ion channel in the pain pathway. Nature 389(October):816–824

    Article  Google Scholar 

  • Carré M, André N, Carles G, Borghi H, Brichese L, Briand C et al (2002) Tubulin Is an Inherent Component of Mitochondrial Membranes That Interacts with the Voltage-dependent Anion Channel. J Biol Chem 277(37):33664–33669

    Article  Google Scholar 

  • Chang W, Berta T, Kim YH, Lee S, Lee SY, Ji RR (2018) Expression and Role of Voltage-Gated Sodium Channels in Human Dorsal Root Ganglion Neurons with Special Focus on Nav 1.7, Species Differences, and Regulation by Paclitaxel. Neurosci Bull 34(1):4–12

  • Chen J, Li L, Chen S, Zhou M, Chen J, Li L et al (2018) The a2d-1-NMDA Receptor Complex Is Critically Involved in Neuropathic Pain Development and Gabapentin Therapeutic Actions. Cell Rep 22(9):2307–21. Available from: https://doi.org/10.1016/j.celrep.2018.02.021

  • Chen Y, Chen S-R, Chen H, Zhang J, Pan H-L (2019) Increased α2δ-1-NMDA receptor coupling potentiates glutamatergic input to spinal dorsal horn neurons in chemotherapy-induced neuropathic pain. J Neurochem 148(2):252–274

    Article  Google Scholar 

  • Chen Y, Yang C, Wang ZJ (2011) Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience 193:440–51. Available from: https://doi.org/10.1016/j.neuroscience.2011.06.085

  • Cirrincione AM, Reimonn CA, Harrison BJ, Rieger S (2022) Longitudinal RNA Sequencing of Skin and DRG Neurons in Mice with Paclitaxel-Induced Peripheral Neuropathy. Data 7(72):1–13

    Google Scholar 

  • Coffeen U, López-ávila A, Pellicer F (2009) Systemic amantadine diminishes inflammatory and neuropathic nociception in the rat. Salud Ment 32(2):139–144

    Google Scholar 

  • Coffeen U, Sotomayor-Sobrino MA, Jiménez-González A, Balcazar-Ochoa LG, Hernández-Delgado P, Fresán A et al (2019) Chemotherapy-induced neuropathic pain characteristics in Mexico ’ s National Cancer Center pain clinic. J Pain Res 12:1331–1339

    Article  Google Scholar 

  • Cook BM, Wozniak KM, Proctor DA, Bromberg RB, Wu Y, Slusher BS et al (2018) Differential Morphological and Biochemical Recovery from Chemotherapy-Induced Peripheral Neuropathy Following Paclitaxel, Ixabepilone, or Eribulin Treatment in Mouse Sciatic Nerves. Neurotox Res 34(3):677–692

    Article  Google Scholar 

  • Costa-pereira JT, Serrao P, Martins I, Tavares I (2020) Serotoninergic pain modulation from the rostral ventromedial medulla ( RVM ) in chemotherapy-induced neuropathy : The role of spinal 5-HT3 receptors. Eur J Neurosci 51:1756–1769

    Article  Google Scholar 

  • Dietrich A (2019) Transient receptor potential (TRP) channels in health and disease. Cells 8(5):413

    Article  Google Scholar 

  • Doyle T, Chen Z, Muscoli C, Bryant L, Esposito E, Cuzzocrea S et al (2012) Targeting the Overproduction of Peroxynitrite for the Prevention and Reversal of Paclitaxel-Induced Neuropathic Pain. J Neurosci 32(18):6149–60

  • Duggett NA, Griffiths LA, Flatters SJL (2017) Paclitaxel-induced painful neuropathy is associated with changes in mitochondrial bioenergetics, glycolysis, and an energy deficit in dorsal root ganglia neurons. Pain 158(8):1499–1508

    Article  Google Scholar 

  • Flatters SJL, Bennett GJ (2006) Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: Evidence for mitochondrial dysfunction. Pain 122(3):245–57. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf

  • Ferlini C, Cicchillitti L, Raspaglio G, Bartollino S, Cimitan S, Bertucci C et al (2009) Paclitaxel Directly Binds to Bcl-2 and Functionally Mimics Activity of Nur77. Cancer Res 69(17):6906–6914

    Article  Google Scholar 

  • Fisgin AC, Luan X, Reed N, Jeong YE, Oh BC, Hoke A (2020) Cisplatin induced neurotoxicity is mediated by Sarm1 and calpain activation. Sci Rep 10(1):1–12. Available from: https://doi.org/10.1038/s41598-020-78896-w

  • Galley HF, McCormick B, Wilson KL, Lowes DA, Colvin L, Torsney C (2017) Melatonin limits paclitaxel-induced mitochondrial dysfunction in vitro and protects against paclitaxel-induced neuropathic pain in the rat. J Pineal Res 63(4):1–14

    Article  Google Scholar 

  • Gao M, Yan X, Weng H-R (2013) Inhibition of glycogen synthase kinase 3beta activity with lithium prevents and attenuates paclitaxel-induced neuropathic pain. Neuroscience 254:301–311

    Article  Google Scholar 

  • Ghoreishi Z, Keshavarz S, Asghari Jafarabadi M, Fathifar Z, Goodman KA, Esfahani A (2018) Risk factors for paclitaxel-induced peripheral neuropathy in patients with breast cancer. BMC Cancer 18(1):5–10

    Article  Google Scholar 

  • Golan-vered Y, Pud D (2012) Chemotherapy-Induced Neuropathic Pain and Its Relation to Cluster Symptoms in Breast Cancer Patients Treated with Paclitaxel. Pain Pract 13(1):46–52

    Article  Google Scholar 

  • Gong N, Park J, Luo ZD (2018) Injury-induced maladaptation and dysregulation of calcium channel α 2 δ subunit proteins and its contribution to neuropathic pain development. Br J Pharmacol 175:2231–2243

    Article  Google Scholar 

  • Gornstein EL, Schwarz TL (2017) Neurotoxic mechanisms of paclitaxel are local to the distal axon and independent of transport defects. Exp Neurol 288:153–66. Available from: https://doi.org/10.1016/j.expneurol.2016.11.015

  • Griffiths LA, Flatters SJL (2015) Pharmacological modulation of the mitochondrial electron transport chain in paclitaxel-induced painful peripheral neuropathy. J Pain 16(10):981–94. Available from: https://doi.org/10.1016/j.jpain.2015.06.008

  • Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46(6):821–31. Available from: https://doi.org/10.1016/j.yjmcc.2009.02.021

  • Hara T, Chiba T, Abe K, Makabe A, Ikeno S, Kawakami K et al (2013) Effect of paclitaxel on transient receptor potential vanilloid 1 in rat dorsal root ganglion. Pain 154(6):882–9. Available from: https://doi.org/10.1016/j.pain.2013.02.023

  • Hershman DL, Lacchetti C, Dworkin RH, Lavoie Smith EM, Bleeker J, Cavaletti G et al (2014) Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American society of clinical oncology clinical practice guideline. J Clin Oncol 32(18):1941–1967

    Article  Google Scholar 

  • Hershman DL, Weimer LH, Wang A, Kranwinkel G, Brafman L, Fuentes D et al (2011) Association between patient reported outcomes and quantitative sensory tests for measuring long-term neurotoxicity in breast cancer survivors treated with adjuvant paclitaxel chemotherapy. Breast Cancer Res Treat 125(3):767–774

    Article  Google Scholar 

  • Hiramoto S, Asano H, Miyamoto T, Takegami M (2021) Risk factors and pharmacotherapy for chemotherapy-induced peripheral neuropathy in paclitaxel-treated female cancer survivors: A retrospective study in Japan. PLoS One 16(12x):e0261473. Available from: https://doi.org/10.1371/journal.pone.0261473

  • Huang Z, Li D, Liu C, Cui Y, Zhu H, Zhang W et al (2014) CX3CL1-mediated macrophage activation contributed to paclitaxel-induced DRG neuronal apoptosis and painful peripheral neuropathy. Brain Behav Immun 40:155–65. Available from: https://doi.org/10.1016/j.bbi.2014.03.014

  • Ilari S, Lauro F, Giancotti LA, Malafoglia V, Dagostino C, Gliozzi M et al (2021) The Protective Effect of Bergamot Polyphenolic Fraction (BPF) on Chemotherapy-Induced Neuropathic Pain. Pharmaceuticals 14:975

    Article  Google Scholar 

  • Jamieson SMF, Liu J, Hsu T, Baguley BC, McKeage MJ (2003) Paclitaxel induces nucleolar enlargement in dorsal root ganglion neurons in vivo reducing oxaliplatin toxicity. Br J Cancer 88(12):1942–1947

    Article  Google Scholar 

  • Jamieson SMF, Liu JJ, Connor B, Dragunow M, McKeage MJ (2007) Nucleolar enlargement, nuclear eccentricity and altered cell body immunostaining characteristics of large-sized sensory neurons following treatment of rats with paclitaxel. Neurotoxicology 28(6):1092–1098

    Article  Google Scholar 

  • Janes K, Esposito E, Doyle T, Cuzzocrea S, Tosh DK, Jacobson KA et al (2015) A3 adenosine receptor agonist prevents the development of paclitaxel-induced neuropathic pain by modulating spinal glial-restricted redox-dependent signaling pathways. Pain 155(12):2560–2567

    Article  Google Scholar 

  • Jennaro TS, Fang F, Kidwell KM, Smith EML, Vangipuram K, Burness ML et al (2020) Vitamin D deficiency increases severity of paclitaxel-induced peripheral neuropathy. Breast Cancer Res Treat 180(3):707–14. Available from: https://doi.org/10.1007/s10549-020-05584-8

  • Jimenez-Andrade JM, Peters CM, Mejia NA, Ghilardi JR, Kuskowski MA, Mantyh PW (2006) Sensory neurons and their supporting cells located in the trigeminal, thoracic and lumbar ganglia differentially express markers of injury following intravenous administration of paclitaxel in the rat. Neurosci Lett 405(1–2):62–7

  • Kalynovska N, Adamek P, Palecek J (2017) TRPV1 Receptors Contribute to Paclitaxel-Induced c-Fos Expression in Spinal Cord Dorsal Horn Neurons. Physiol Res 8408:549–552

    Article  Google Scholar 

  • Kamata Y, Kambe T, Chiba T, Yamamoto K (2020) Paclitaxel Induces Upregulation of Transient Receptor Potential Vanilloid 1 Expression in the Rat Spinal Cord. Int J Mol Sci 21(12):4341

    Article  Google Scholar 

  • Kaneko Y, Szallasi A (2014) Transient receptor potential (TRP) channels: A clinical perspective. Br J Pharmacol 171(10):2474–2507

    Article  Google Scholar 

  • Karch J, Molkentin JD (2014) Identifying the components of the elusive mitochondrial permeability transition pore. Proc Natl Acad Sci U S A 111(29):10396–10397

    Article  Google Scholar 

  • Karine Rigo F, Vargas Bochi G, Lana Pereira A, Adamante G, Ronsani Ferro P, Prá SD De et al (2019) TsNTxP, a non-toxic protein from Tityus serrulatus scorpion venom, induces antinociceptive effects by suppressing glutamate release in mice. Eur J Pharmacol 855(May):65–74. Available from: https://doi.org/10.1016/j.ejphar.2019.05.002

  • Kawakami K, Chiba T, Katagiri N, Saduka M, Abe K, Utsunomiya I et al (2012) Paclitaxel increases high voltage-dependent calcium channel current in dorsal root ganglion neurons of the rat. J Pharmacol Sci 120(3):187–95. Available from: https://doi.org/10.1254/jphs.12123FP

  • Kawashiri T, Inoue M, Mori K, Kobayashi D, Mine K, Ushio S (2021) Preclinical and Clinical Evidence of Therapeutic Agents for Paclitaxel-Induced Peripheral Neuropathy. Int J Mol Sci 22:8733

    Article  Google Scholar 

  • Khalefa HG, Shawki MA, Aboelhassan R, El Wakeel LM (2020) Evaluation of the effect of N-acetylcysteine on the prevention and amelioration of paclitaxel-induced peripheral neuropathy in breast cancer patients: a randomized controlled study. Breast Cancer Res Treat 183(1):117–25. Available from: https://doi.org/10.1007/s10549-020-05762-8

  • Khorchid A, Ikura M (2002) How calpain is activated by calcium. Nat Struct Biol 9(4):239–241

    Article  Google Scholar 

  • Kober KM, Lee MC, Olshen A, Conley YP, Sirota M, Keiser M et al (2020) Differential methylation and expression of genes in the hypoxia-inducible factor 1 signaling pathway are associated with paclitaxel-induced peripheral neuropathy in breast cancer survivors and with preclinical models of chemotherapy-induced neuropathic pa. Mol Pain 16:1–15

    Article  Google Scholar 

  • Kober KM, Mazor M, Abrams G, Olshen A, Conley YP, Hammer M et al (2018) Phenotypic Characterization of Paclitaxel-Induced Peripheral Neuropathy in Cancer Survivors. J Pain Symptom Manage 56(6):908–919.e3. Available from: https://doi.org/10.1016/j.jpainsymman.2018.08.017

  • Kober KM, Schumacher M, Conley YP, Topp K, Mazor M, Hammer MJ et al (2019) Signaling pathways and gene co-expression modules associated with cytoskeleton and axon morphology in breast cancer survivors with chronic paclitaxel-induced peripheral neuropathy. Mol Pain 15(August):1–29

    Google Scholar 

  • Li Y, Adamek P, Zhang H, Tatsui CE, Rhines XD, Mrozkova P et al (2015) The Cancer Chemotherapeutic Paclitaxel Increases Human and Rodent Sensory Neuron Responses to TRPV1 by Activation of TLR4. J Neurosci 35(39):13487–13500

    Article  Google Scholar 

  • Li Y, North RY, Rhines LD, Tatsui CE, Rao G, Edwards DD et al (2018) DRG voltage-gated sodium channel 1.7 is upregulated in paclitaxel-induced neuropathy in rats and in humans with neuropathic pain. J Neurosci 38(5):1124–36

  • Li Y, Tatsui CE, Rhines LD, North RY, Harrison DS, Cassidy RM et al (2017) Dorsal root ganglion neurons become hyperexcitable and increase expression of voltage-gated T-type calcium channels (Cav3.2) in paclitaxel-induced peripheral neuropathy. Pain 158(3):417–29

  • Li X, Yang S, Wang L, Liu P, Zhao S, Li H et al (2019) Resveratrol inhibits paclitaxel-induced neuropathic pain by the activation of PI3K / Akt and SIRT1 / PGC1 α pathway. J Pain Res 12:879–890

    Article  Google Scholar 

  • Li Y, Yin C, Liu B, Nie H, Wang J, Zeng D et al (2021) Transcriptome profiling of long noncoding RNAs and mRNAs in spinal cord of a rat model of paclitaxel-induced peripheral neuropathy identifies potential mechanisms mediating neuroinflammation and pain. J Neuroinflammation 18(1):1–22

    Article  Google Scholar 

  • Li Y, Zhang H, Kosturakis AK, Cassidy RM, Zhang H, Kennamer-chapman RM et al (2015) MAPK signaling downstream to TLR4 contributes to paclitaxel-induced peripheral neuropathy. Brain Behav Immun 49:255–66. Available from: https://doi.org/10.1016/j.bbi.2015.06.003

  • Liu X, Wang G, Ai G, Xu X, Niu X, Zhang M (2020) Selective Ablation of Descending Serotonin from the Rostral Ventromedial Medulla Unmasks Its Pro-Nociceptive Role in Chemotherapy-Induced Painful Neuropathy. J Pain Res 13:3081–3094

    Article  Google Scholar 

  • Liu X-J, Zhang Y, Liu T, Xu Z-Z, Park C-K, Berta T et al (2014) Nociceptive neurons regulate innate and adaptive immunity and neuropathic pain through MyD88 adapter. Cell Res 24(11):1374–7

  • Lopéz-Avila A, Coffeen U, Ortega-Legaspi JM, Del Ángel R, Pellicer F (2004) Dopamine and NMDA systems modulate long-term nociception in the rat anterior cingulate cortex. Pain 111(1–2):136–143

    Article  Google Scholar 

  • Loprinzi CL, Reeves BN, Dakhil SR, Sloan JA, Wolf SL, Burger KN et al (2011) Natural History of Paclitaxel-Associated Acute Pain Syndrome : Prospective Cohort Study NCCTG N08C1. J Clin Oncol 29(11):1472–1478

    Article  Google Scholar 

  • Luo H, Liu H, Luo H, Liu H, Zhang W, Matsuda M et al (2019) Interleukin-17 Regulates Neuron-Glial Communications, Synaptic Transmission, and Neuropathic Pain after Chemotherapy. Cell Reports 29(8):2384–97. Available from: https://doi.org/10.1016/j.celrep.2019.10.085

  • Ma D, Cao J, Wang X (2021) RIP3 / MLKL pathway - regulated necroptosis : A new mechanism of paclitaxel - induced peripheral neuropathy. J Biochem Mol Toxicol 35(8):e22834

    Article  Google Scholar 

  • Makker PGS, Duffy SS, Lees JG, Perera CJ, Tonkin S, Butovsky O et al (2017) Characterisation of Immune and Neuroinflammatory Changes Associated with Chemotherapy-Induced Peripheral Neuropathy. PLoS One 12(1):e0170814. Available from: https://doi.org/10.1371/journal.pone.0170814

  • Manjavachi MN, Passos GF, Trevisan G, Araújo SB, Pontes JP, Fernandes ES et al (2019) Spinal blockage of CXCL1 and its receptor CXCR2 inhibits paclitaxel-induced peripheral neuropathy in mice. Neuropharmacology 151:136–143

    Article  Google Scholar 

  • Masliah E, Díez-Tejedor E (2012) The pharmacology of neurotrophic treatment with Cerebrolysin: brain protection and repair to counteract pathologies of acute and chronic neurological disorders. Drugs Today (Barc) 48 Suppl A:3–24

  • Masocha W (2015a) Comprehensive Analysis of the GABAergic System Gene Expression Profile in the Anterior Cingulate Cortex of Mice With Paclitaxel-Induced Neuropathic Pain. Gene Expr 16:145–153

    Article  Google Scholar 

  • Masocha W (2015b) Astrocyte activation in the anterior cingulate cortex and altered glutamatergic gene expression during paclitaxel-induced neuropathic pain in mice. Peer 3:e1350

    Article  Google Scholar 

  • Masocha W, Parvathy SS (2016) Preventative and therapeutic effects of a GABA transporter 1 inhibitor administered systemically in a mouse model of paclitaxel-induced neuropathic pain. PeerJ 4:e2798

    Article  Google Scholar 

  • Materazzi S, Fusi C, Benemei S, Pedretti P, Patacchini R, Nilius B (2012) TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism. Pflügers Arch Eur J Physiol 463(4):561–569

    Article  Google Scholar 

  • Matsumura Y, Yokoyama Y, Hirakawa H, Shigeto T, Futagami M (2014) The prophylactic effects of a traditional Japanese medicine, goshajinkigan, on paclitaxel-induced peripheral neuropathy and its mechanism of action. Mol Pain 10(61):1–8

    Google Scholar 

  • Mccormick B, Lowes DA, Colvin L, Torsney C, Galley HF (2016) MitoVitE, a mitochondria-targeted antioxidant, limits paclitaxel-induced oxidative stress and mitochondrial damage in vitro, and paclitaxel-induced mechanical hypersensitivity in a rat pain model. Br J Anaesth 117(5):659–66. Available from: https://doi.org/10.1093/bja/aew309

  • Mekhail TM, Markman M (2002) Paclitaxel in cancer therapy. Expert Opin Pharmacother 3(6):755–766

    Article  Google Scholar 

  • Melli G, Taiana M, Camozzi F, Triolo D, Podini P, Quattrini A et al (2008) Alpha-lipoic acid prevents mitochondrial damage and neurotoxicity in experimental chemotherapy neuropathy. Exp Neurol 214(2):276–84. Available from: https://doi.org/10.1016/j.expneurol.2008.08.013

  • Miyano K, Tang H Bin, Nakamura Y, Morioka N, Inoue A, Nakata Y (2009) Paclitaxel and vinorelbine, evoked the release of substance P from cultured rat dorsal root ganglion cells through different PKC isoform-sensitive ion channels. Neuropharmacology 57(1):25–32. Available from: https://doi.org/10.1016/j.neuropharm.2009.04.001

  • Mizrahi D, Park SB, Li T, Timmins HC, Trinh T, Au K et al (2022) Hemoglobin, Body Mass Index, and Age as Risk Factors for Paclitaxel- and Oxaliplatin-Induced Peripheral Neuropathy. JAMA Open Netw 4(2):1–14

    Google Scholar 

  • Nashawi H, Masocha W, Edafiogho IO, Kombian BS (2016) Paclitaxel Causes Electrophysiological Changes in the Anterior Cingulate Cortex via Modulation of the γ-Aminobutyric Acid-ergic System. Med Princ Pract 25:423–428

    Article  Google Scholar 

  • Osmani K, Vignes S, Aissi M, Wade F, Milani P, Lévy BI et al (2012) Taxane-induced peripheral neuropathy has good long-term prognosis: A 1- to 13-year evaluation. J Neurol 259(9):1936–1943

    Article  Google Scholar 

  • Pachman DR, Dockter T, Zekan PJ, Fruth B, Ruddy KJ, Ta LE et al (2017) A pilot study of minocycline for the prevention of paclitaxel-associated neuropathy : ACCRU study RU221408I

  • Park JF, Luo ZD (2010) Calcium channel functions in pain processing. Channels 4(6):510–7

  • Peters CM, Jimenez-Andrade JM, Jonas BM, Sevcik MA, Koewler NJ, Ghilardi JR et al (2007a) Intravenous paclitaxel administration in the rat induces a peripheral sensory neuropathy characterized by macrophage infiltration and injury to sensory neurons and their supporting cells. Exp Neurol 203(1):42–54

    Article  Google Scholar 

  • Peters CM, Jimenez-Andrade JM, Kuskowski MA, Ghilardi JR, Mantyh PW (2007b) An evolving cellular pathology occurs in dorsal root ganglia, peripheral nerve and spinal cord following intravenous administration of paclitaxel in the rat. Brain Res 1168(1):46–59

    Article  Google Scholar 

  • Pike CT, Birnbaum HG, Muehlenbein CE, Pohl GM, Natale RB (2012) Healthcare Costs and Workloss Burden of Patients with Chemotherapy-Associated Peripheral Neuropathy in Breast, Ovarian, Head and Neck, and Nonsmall Cell Lung Cancer. Chemother Res Pract 2012:1–10

    Article  Google Scholar 

  • Quintão LNM, Santin JR, Stoeberl LC, Corrêa TP, Melato J, Costa R (2019) Pharmacological Treatment of Chemotherapy-Induced Neuropathic Pain : PPAR γ Agonists as a Promising Tool. Front Neurosci 13:907

    Article  Google Scholar 

  • Reeves BN, Dakhil SR, Sloan JA, Wolf SL, Burger KN, Kamal A et al (2012) Further Data Supporting That Paclitaxel-Associated Acute Pain Syndrome Is Associated With Development of Peripheral Neuropathy. Cancer 118(20):5171–5178

    Article  Google Scholar 

  • Reyes-Gibby CC, Morrow PK, Buzdar A, Shete S (2009) Chemotherapy-induced peripheral neuropathy as a predictor of neuropathic pain in breast cancer patients previously treated with paclitaxel. J Pain 10(11):1146–1150

    Article  Google Scholar 

  • Robertson J, Raizer J, Hodges JS, Gradishar W, Allen JA (2018) Risk factors for the development of paclitaxel induced neuropathy in breast cancer patients. J Peripher Nerv Syst 23(2):129–133

    Article  Google Scholar 

  • Saito Y, Kobayashi M, Yamada T, Sakakibara-konishi J, Shinagawa N, Kinoshita I et al (2020) Efficacy of additional dexamethasone administration for the attenuation of paclitaxel-associated acute pain syndrome. Support Care Cancer 28(1):221–227

    Article  Google Scholar 

  • Sánchez JC, Ehrlich BE (2021) Functional Interaction between Transient Receptor Potential V4 Channel and Neuronal Calcium Sensor 1 and the Effects of Paclitaxel. Mol Pharmacol 100:258–270

    Article  Google Scholar 

  • Sánchez JC, Muñoz LV, Ehrlich BE (2020) Modulating TRPV4 channels with paclitaxel and lithium. Cell Calcium 91:102266

    Article  Google Scholar 

  • Segat GC, Manjavachi MN, Matias DO, Passos GF, Freitas CS, Costa R et al (2017) Antiallodynic effect of β-caryophyllene on paclitaxel-induced peripheral neuropathy in mice. Neuropharmacology 125:207–219

    Article  Google Scholar 

  • Seretny M, Currie GL, Sena ES, Ramnarine S, Grant R, Macleod MR et al (2014) Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain 155(12):2461–70. Available from: https://doi.org/10.1016/j.pain.2014.09.020

  • Shemesh OA, Spira ME (2010) Paclitaxel induces axonal microtubules polar reconfiguration and impaired organelle transport: Implications for the pathogenesis of paclitaxel-induced polyneuropathy. Acta Neuropathol 119(2):235–248

    Article  Google Scholar 

  • Speck RM, Sammel MD, Farrar JT, Hennessy S, Mao JJ, Stineman MG et al (2013) Impact of chemotherapy-induced peripheral neuropathy on treatment delivery in nonmetastatic breast cancer. J Oncol Pract 9(5):e234–e240

    Article  Google Scholar 

  • Starobova H, Vetter I (2017) Pathophysiology of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci 10(May):1–21

    Google Scholar 

  • Tanabe Y, Hashimoto K, Shimizu C, Hirakawa A, Harano K, Yunokawa M et al (2013) Paclitaxel-induced peripheral neuropathy in patients receiving adjuvant chemotherapy for breast cancer. Int J Clin Oncol 18(1):132–138

    Article  Google Scholar 

  • Tasnim A, Rammelkamp Z, Slusher AB, Wozniak K, Slusher BS, Farah MH (2016) Paclitaxel causes degeneration of both central and peripheral axon branches of dorsal root ganglia in mice. BMC Neurosci 17(1):1–8

    Article  Google Scholar 

  • Tofthagen C, McAllister RD, Visovsky C (2013) Peripheral neuropathy caused by Paclitaxel and docetaxel: an evaluation and comparison of symptoms. J Adv Pract Oncol 4(4):204–15. Available from: https://pubmed.ncbi.nlm.nih.gov/25032002

  • Ullah R, Ali G, Subhan F, Naveed M, Khan A, Khan J et al (2021) Attenuation of nociceptive and paclitaxel-induced neuropathic pain by targeting inflammatory, CGRP and substance P signaling using. Neurochem Int 144:104981

    Article  Google Scholar 

  • Vandenberg RJ, Ryan RM (2013) Mechanisms of glutamate transport. Physiol Rev 93:1621–1657

    Article  Google Scholar 

  • Verma P, Eaton M, Kienle A, Flockerzi D, Yang Y, Ramkrishna D (2020) Examining Sodium and Potassium Channel Conductances Involved in Hyperexcitability of Chemotherapy-Induced Peripheral Neuropathy: A Mathematical and Cell Culture-Based Study. Front Comput Neurosci 14(October)

  • Ward SJ, Mcallister SD, Kawamura R, Murase R, Neelakantan H, Walker EA (2014) Cannabidiol inhibits neuropathic pain through 5-HT 1A receptors without diminishing nervous system function or chemotherapy efficacy. Br J Pharmacol 171:636–645

    Article  Google Scholar 

  • Weaver BA (2014) How Taxol/paclitaxel kills cancer cells. Mol Biol Cell 25(18):2677–81

  • Weng H, Aravindan N, Cata JP, Chen J, Shaw ADS, Dougherty PM (2005) Spinal glial glutamate transporters downregulate in rats with taxol-induced hyperalgesia. Neurosci Lett 386:18–22

    Article  Google Scholar 

  • Wozniak KM, Nomoto K, Lapidus RG, Wu Y, Carozzi V, Cavaletti G et al (2011) Comparison of neuropathy-inducing effects of eribulin mesylate, paclitaxel, and ixabepilone in mice. Cancer Res 71(11):3952–3962

    Article  Google Scholar 

  • Wu P, Chen Y (2019) Evodiamine ameliorates paclitaxel-induced neuropathic pain by inhibiting inflammation and maintaining mitochondrial anti- oxidant functions. Hum Cell 32(3):251–159. Available from: https://doi.org/10.1007/s13577-019-00238-4

  • Xiao W, Boroujerdi A, Bennet GJ, Luo ZD (2007) Neuropathy : Analgesic Effects of Gabapentin and Effects on Expression of the Alpha-2-Delta Type-1. Neuroscience 144(2):714–720

    Article  Google Scholar 

  • Xie J, Chen S, Pan H (2017) Presynaptic mGluR5 receptor controls glutamatergic input through protein kinase C – NMDA receptors in paclitaxel- induced neuropathic pain. J Biol Chem 292(50):20644–54. Available from: https://doi.org/10.1074/jbc.M117.818476

  • Xie J-D, Chen S-R, Chen H, Zeng W-A, Pan W-A (2016) Presynaptic N-Methyl-D-aspartate (NMDA) Receptor Activity Is Increased Through Protein Kinase C in Paclitaxel-induced Neuropathic Pain. J Biol Chem 291(37):19364–19373

    Article  Google Scholar 

  • Xu Y, Cheng G, Zhu Y, Zhang X, Pu S, Wu J et al (2016) Anti-nociceptive roles of the glia-specific metabolic inhibitor fluorocitrate in paclitaxel-evoked neuropathic pain. Acta Biochim Biophys Sin (shanghai) 48(10):902–908

    Article  Google Scholar 

  • Xu J, Zhang L, Xie M, Li Y, Huang P, Saunders TL et al (2018) Role of Complement in a Rat Model of Paclitaxel-Induced Peripheral Neuropathy. J Immunol 200(12):4094–4101

    Article  Google Scholar 

  • Yadav R, Yan X, Maixner DW, Gao M, Weng H-R (2015) Blocking the GABA transporter GAT-1 ameliorates spinal GABAergic dishinibition and neuropathic pain induced by paclitaxel. J Neurochem 133:857–869

    Article  Google Scholar 

  • Yihang Li MF, Pazyra-Murphy DA, Tavares Russo M de S, Tang S, Chiung-Ya C, Yi-Ping H et al (2021) Sarm1 activation produces cADPR to increase intra-axonal Ca ++ and promote axon degeneration in. J Cell Biol 221(2):e202106080

  • Yu Ma RS, Kayani K, Whyte-Oshodi D, Whyte-Oshodi A, Nachiappan N, Gnanarajah S et al (2019) Voltage gated sodium channels as therapeutic targets for chronic pain. J Pain Res 12:2709–2722

    Article  Google Scholar 

  • Zhang XL, Cao XY, Lai RC, Xie MX, Zeng WA (2019) Puerarin relieves paclitaxel-induced neuropathic pain: The role of NaV1.8 β1 subunit of sensory neurons. Front Pharmacol 9(JAN):1–17

  • Zhang H, Dougherty PM (2014) Enhanced Excitability of Primary Sensory Neurons and Altered Gene Expression of Neuronal Ion Channels in Dorsal Root Ganglion in Paclitaxel-Induced Peripheral Neuropathy. Anesthesiology 120(6):1463–1475

    Article  Google Scholar 

  • Zhang H, Li Y, De C-B, Kavelaars A, Heijnen CJ, Albrecht PJ et al (2016) Dorsal root ganglion infiltration by macrophages contributes to paclitaxel chemotherapy induced peripheral neuropathy. J Pain 17(7):775–786

    Article  Google Scholar 

  • Zhang H, Yoon S-Y, Zhang H, Dougherty PM (2012) Evidence that spinal astrocytes but not microglia contribute to the pathogenesis of paclitaxel-induced painful neuropathy. J Pain 13(3):293–303

    Article  Google Scholar 

  • Zhang Y, Huang F, Xu Y, Xiang W, Xie C (2021) TRPV1 is involved in the antinociceptive effects of resveratrol in paclitaxel-induced neuropathic pain. All Life 14(1):61–4. Available from: https://doi.org/10.1080/26895293.2020.1861111

  • Zheng H, Hua W, Bennett GJ (2011) Functional deficits in peripheral nerve mitochondria in rats with paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy. Exp Neurol 232(2):154–61. Available from: https://doi.org/10.1016/j.expneurol.2011.08.016

Download references

Acknowledgements

The authors would like to thank the Universidad Nacional Autónoma de México (UNAM) and its postgraduate program in Biological Sciences for its support in the realization of this paper.

Funding

The present work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT) by providing R. Velasco-González (CVU 854822) with grant 778710.

Author information

Authors and Affiliations

Authors

Contributions

U.C. had the idea for the article, R.V.G performed the literature search and data analysis, and U.C. and R.V.G. drafted and critically revised the work.

Corresponding author

Correspondence to Ulises Coffeen.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velasco-González, R., Coffeen, U. Neurophysiopathological Aspects of Paclitaxel-induced Peripheral Neuropathy. Neurotox Res 40, 1673–1689 (2022). https://doi.org/10.1007/s12640-022-00582-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-022-00582-8

Keywords

Navigation