Skip to main content

Advertisement

Log in

Spreading of Pathology in Alzheimer’s Disease

  • REVIEW
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The senile plaques (SPs) and neurofibrillary tangles (NFTs) are the two major pathological hallmarks of AD, which are composed of β-amyloid protein and Tau protein. So the β-amyloid protein (Aβ) and Tau oligomers (oTau) are the majority in the pathology of AD. Recently, the spreading of Aβ and oTau in the brain of AD patients has received heated value. In this review, we summarize recent research progress and aim to figure out the spreading mechanism of Aβ and Tau in AD via introduction of the formation, release, uptake, diffusion between different brain regions, and the propagation principle of Aβ and Tau. Although the mechanisms of the spreading pathology in AD are still not very clear, increasing discoveries confirm that Aβ and oTau could transmit from one neuron to another along the anatomical connected synapses. Meanwhile, a mass of studies also report that they have a totally opposite hierarchical spatiotemporal pattern of spreading in cerebral areas. In addition, Tau proteins might mediate Aβ toxicity in the brain, and they might have synergistic roles with each other. So some therapies have emerged, such as inhibiting the release, preventing the oligomerization, and blocking the uptake. This review would be helpful to comprehend the mechanism of transmission in AD and provide a new way to the targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agholme L, Hallbeck M (2014) Getting rid of intracellular Abeta—loss of cellular degradation leads to transfer between connected neurons. Curr Pharm Des 20:2458–2468

    Article  CAS  PubMed  Google Scholar 

  • Baloyannis SJ (2014) Golgi apparatus and protein trafficking in Alzheimer’s disease. J Alzheimers Dis 42(Suppl 3):S153–S162

    PubMed  Google Scholar 

  • Beekes M, Thomzig A, Schulz-Schaeffer WJ, Burger R (2014) Is there a risk of prion-like disease transmission by Alzheimer- or Parkinson-associated protein particles? Acta Neuropathol 128:463–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Bergen M, Barghorn S, Biernat J, Mandelkow EM, Mandelkow E (2005) Tau aggregation is driven by a transition from random coil to beta sheet structure. Biochim Biophys Acta 1739:158–166

    Article  CAS  Google Scholar 

  • Bilousova T, Miller CA, Poon WW, Vinters HV, Corrada M, Kawas C, Hayden EY, Teplow DB, Glabe C, Albay R, Cole GM, Teng E, Gylys KH (2016) Synaptic amyloid-β oligomers precede p-tau and differentiate high pathology control cases. Am J Pathol 186:185–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloom GS (2014) Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71:505–508

    Article  PubMed  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K (2011) Alzheimer's pathogenesis: is there neuron-to-neuron propagation? Acta Neuropathol 121:589–595

    Article  CAS  PubMed  Google Scholar 

  • Brettschneider J, Del Tredici K, Lee VM, Trojanowski JQ (2015) Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci 16:109–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brundin P, Melki R, Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 11:301–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calafate S, Buist A, Miskiewicz K, Vijayan V, Daneels G, de Strooper B, de Wit J, Verstreken P, Moechars D (2015) Synaptic contacts enhance cell-to-cell tau pathology propagation. Cell Rep 11:1176–1183

    Article  CAS  PubMed  Google Scholar 

  • de Calignon A, Polydoro M, Suarez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, Pitstick R, Sahara N, Ashe KH, Carlson GA, Spires-Jones TL, Hyman BT (2012) Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73:685–697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cerpa W, Dinamarca MC, Inestrosa NC (2008) Structure-function implications in Alzheimer’s disease: effect of Abeta oligomers at central synapses. Curr Alzheimer Res 5:233–243

    Article  CAS  PubMed  Google Scholar 

  • Chai X, Dage JL, Citron M (2012) Constitutive secretion of tau protein by an unconventional mechanism. Neurobiol Dis 48:356–366

    Article  CAS  PubMed  Google Scholar 

  • Clavaguera F, Grueninger F, Tolnay M (2014) Intercellular transfer of tau aggregates and spreading of tau pathology: implications for therapeutic strategies. Neuropharmacology 76 Pt A:9–15

    Article  PubMed  CAS  Google Scholar 

  • Clavaguera F, Hench J, Goedert M, Tolnay M (2015) Invited review: prion-like transmission and spreading of tau pathology. Neuropathol Appl Neurobiol 41:47–58

    Article  CAS  PubMed  Google Scholar 

  • Crouse NR, Ajit D, Udan ML, Nichols MR (2009) Oligomeric amyloid-beta(1-42) induces THP-1 human monocyte adhesion and maturation. Brain Res 1254:109–119

    Article  CAS  PubMed  Google Scholar 

  • De Felice FG, Wu D, Lambert MP, Fernandez SJ, Velasco PT, Lacor PN, Bigio EH, Jerecic J, Acton PJ, Shughrue PJ, Chen-Dodson E, Kinney GG, Klein WL (2008) Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by A beta oligomers. Neurobiol Aging 29:1334–1347

    Article  PubMed  CAS  Google Scholar 

  • Deng J, Habib A, Obregon DF, Barger SW, Giunta B, Wang YJ, Hou H, Sawmiller D, Tan J (2015) Soluble amyloid precursor protein alpha inhibits tau phosphorylation through modulation of GSK3beta signaling pathway. J Neurochem 135:630–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Hernandez M, Gomez-Ramos A, Rubio A, Gomez-Villafuertes R, Naranjo JR, Miras-Portugal MT, Avila J (2010) Tissue-nonspecific alkaline phosphatase promotes the neurotoxicity effect of extracellular tau. J Biol Chem 285:32539–32548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domert J, Rao SB, Agholme L, Brorsson AC, Marcusson J, Hallbeck M, Nath S (2014) Spreading of amyloid-beta peptides via neuritic cell-to-cell transfer is dependent on insufficient cellular clearance. Neurobiol Dis 65:82–92

    Article  CAS  PubMed  Google Scholar 

  • Drubin DG, Kirschner MW (1986) Tau protein function in living cells. J Cell Biol 103:2739–2746

    Article  CAS  PubMed  Google Scholar 

  • Dujardin S, Lecolle K, Caillierez R, Begard S, Zommer N, Lachaud C, Carrier S, Dufour N, Auregan G, Winderickx J, Hantraye P, Deglon N, Colin M, Buee L (2014) Neuron-to-neuron wild-type Tau protein transfer through a trans-synaptic mechanism: relevance to sporadic tauopathies. Acta Neuropathol Commun 2:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Economou NJ, Giammona MJ, Do TD, Zheng X, Teplow DB, Buratto SK, Bowers MT (2016) Amyloid beta-protein assembly and Alzheimer’s disease: dodecamers of Abeta42, but not of Abeta40, seed fibril formation. J Am Chem Soc 138:1772–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisele YS, Duyckaerts C (2016) Propagation of Aß pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathol 131(1):5–25

  • Gerson JE, Kayed R (2013) Formation and propagation of tau oligomeric seeds. Front Neurol 4:93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glabe C (2001) Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer’s disease. J Mol Neurosci 17:137–145

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Munoz MJ, Gerson J, Castillo-Carranza DL (2015) Tau oligomers: the toxic player at synapses in Alzheimer’s disease. Front Cell Neurosci 9:464

    Article  PubMed  PubMed Central  Google Scholar 

  • Gunn AP, Wong BX, Johanssen T, Griffith JC, Masters CL, Bush AI, Barnham KJ, Duce JA, Cherny RA (2016) Amyloid-beta peptide Abeta3pE-42 induces lipid peroxidation, membrane permeabilization and calcium-influx in neurons. J Biol Chem 291(12):6134–6145

  • Guo JL, Lee VM (2014) Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med 20:130–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112

    Article  CAS  PubMed  Google Scholar 

  • Hallbeck M, Nath S, Marcusson J (2013) Neuron-to-neuron transmission of neurodegenerative pathology. Neuroscientist 19:560–566

    Article  CAS  PubMed  Google Scholar 

  • Hamilton A, Zamponi GW, Ferguson SS (2015) Glutamate receptors function as scaffolds for the regulation of β-amyloid and cellular prion protein signaling complexes. Mol Brain 8:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harris JA, Devidze N, Verret L, Ho K, Halabisky B, Thwin MT, Kim D, Hamto P, Lo I, Yu GQ, Palop JJ, Masliah E, Mucke L (2010) Transsynaptic progression of amyloid-beta-induced neuronal dysfunction within the entorhinal-hippocampal network. Neuron 68:428–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heilbronner G, Eisele YS, Langer F, Kaeser SA, Novotny R, Nagarathinam A, Aslund A, Hammarstrom P, Nilsson KP, Jucker M (2013) Seeded strain-like transmission of beta-amyloid morphotypes in APP transgenic mice. EMBO Rep 14:1017–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Crick SL, Bu G, Frieden C, Pappu RV, Lee JM (2009) Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide. Proc Natl Acad Sci U S A 106:20324–20329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubin E, van Nuland NA, Broersen K, Pauwels K (2014) Transient dynamics of Abeta contribute to toxicity in Alzheimer’s disease. Cell Mol Life Sci 71:3507–3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iba M, McBride JD, Guo JL, Zhang B, Trojanowski JQ, Lee VM (2015) Tau pathology spread in PS19 tau transgenic mice following locus coeruleus (LC) injections of synthetic tau fibrils is determined by the LC’s afferent and efferent connections. Acta Neuropathol 130:349–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irvine GB, El-Agnaf OM, Shankar GM, Walsh DM (2008) Protein aggregation in the brain: the molecular basis for Alzheimer’s and Parkinson’s diseases. Mol Med 14:451–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarrett JT, Lansbury PT Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73:1055–1058

    Article  CAS  PubMed  Google Scholar 

  • Jellinger KA (2012) Interaction between pathogenic proteins in neurodegenerative disorders. J Cell Mol Med 16:1166–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe DJ (2011) Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci U S A 108:5819–5824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson GV, Stoothoff WH (2004) Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci 117:5721–5729

    Article  CAS  PubMed  Google Scholar 

  • Joshi P, Benussi L, Furlan R, Ghidoni R, Verderio C (2015) Extracellular vesicles in Alzheimer’s disease: friends or foes? Focus on abeta-vesicle interaction. Int J Mol Sci 16:4800–4813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jucker M, Walker LC (2011) Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann Neurol 70:532–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501:45–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kfoury N, Holmes BB, Jiang H, Holtzman DM, Diamond MI (2012) Trans-cellular propagation of Tau aggregation by fibrillar species. J Biol Chem 287:19440–19451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kins S, Crameri A, Evans DR, Hemmings BA, Nitsch RM, Gotz J (2001) Reduced protein phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice. J Biol Chem 276:38193–38200

    CAS  PubMed  Google Scholar 

  • Kolarova M, Garcia-Sierra F, Bartos A, Ricny J, Ripova D (2012) Structure and pathology of tau protein in Alzheimer disease. Int J Alzheimers Dis 2012:731526

    PubMed  PubMed Central  Google Scholar 

  • Kontsekova E, Zilka N, Kovacech B, Novak P, Novak M (2014a) First-in-man tau vaccine targeting structural determinants essential for pathological tau-tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer’s disease model. Alzheimers Res Ther 6:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kontsekova E, Zilka N, Kovacech B, Skrabana R, Novak M (2014b) Identification of structural determinants on tau protein essential for its pathological function: novel therapeutic target for tau immunotherapy in Alzheimer’s disease. Alzheimers Res Ther 6:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar A, Pate KM, Moss MA, Dean DN, Rangachari V (2014) Self-propagative replication of Abeta oligomers suggests potential transmissibility in Alzheimer disease. PLoS One 9:e111492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Kiritoshi T, Neugebauer V, Jackson GR, Kayed R (2012a) Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci Rep 2:700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Sarmiento J, Troncoso J, Jackson GR, Kayed R (2012b) Identification of oligomers at early stages of tau aggregation in Alzheimer’s disease. FASEB J 26:1946–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesne SE, Sherman MA, Grant M, Kuskowski M, Schneider JA, Bennett DA, Ashe KH (2013) Brain amyloid-beta oligomers in ageing and Alzheimer’s disease. Brain 136:1383–1398

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis J, Dickson DW (2016) Propagation of tau pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathol 131:27–48

    Article  CAS  PubMed  Google Scholar 

  • Li X, Lei P, Tuo Q, Ayton S, Li QX, Moon S, Volitakis I, Liu R, Masters CL, Finkelstein DI, Bush AI (2015) Enduring elevations of hippocampal amyloid precursor protein and iron are features of β-Amyloid toxicity and are mediated by Tau. Neurotherapeutics 12(4):862–873

  • Liu L, Drouet V, Wu JW, Witter MP, Small SA, Clelland C, Duff K (2012a) Trans-synaptic spread of tau pathology in vivo. PLoS One 7:e31302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XP, Zheng HY, Qu M, Zhang Y, Cao FY, Wang Q, Ke D, Liu GP, Wang JZ (2012b) Upregulation of astrocytes protein phosphatase-2A stimulates astrocytes migration via inhibiting p38 MAPK in tg2576 mice. Glia 60:1279–1288

    Article  PubMed  Google Scholar 

  • Lu H, Zhu XC, Jiang T, Yu JT, Tan L (2015) Body fluid biomarkers in Alzheimer’s disease. Ann Transl Med 3:70

    PubMed  PubMed Central  Google Scholar 

  • Ludin B, Matus A (1993) The neuronal cytoskeleton and its role in axonal and dendritic plasticity. Hippocampus 3:61–71

    PubMed  Google Scholar 

  • MacDonald AB (2007) Alzheimer's disease Braak stage progressions: reexamined and redefined as Borrelia infection transmission through neural circuits. Med Hypotheses 68:1059–1064

    Article  PubMed  Google Scholar 

  • Mandelkow EM, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2:a006247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsumura S, Shinoda K, Yamada M, Yokojima S, Inoue M, Ohnishi T, Shimada T, Kikuchi K, Masui D, Hashimoto S, Sato M, Ito A, Akioka M, Takagi S, Nakamura Y, Nemoto K, Hasegawa Y, Takamoto H, Inoue H, Nakamura S, Nabeshima Y, Teplow DB, Kinjo M, Hoshi M (2011) Two distinct amyloid beta-protein (Abeta) assembly pathways leading to oligomers and fibrils identified by combined fluorescence correlation spectroscopy, morphology, and toxicity analyses. J Biol Chem 286:11555–11562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed NV, Herrou T, Plouffe V, Piperno N, Leclerc N (2013) Spreading of tau pathology in Alzheimer’s disease by cell-to-cell transmission. Eur J Neurosci 37:1939–1948

    Article  PubMed  Google Scholar 

  • Mukrasch MD, Bibow S, Korukottu J, Jeganathan S, Biernat J, Griesinger C, Mandelkow E, Zweckstetter M (2009) Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol 7:e34

    Article  PubMed  CAS  Google Scholar 

  • Nath S, Agholme L, Kurudenkandy FR, Granseth B, Marcusson J, Hallbeck M (2012) Spreading of neurodegenerative pathology via neuron-to-neuron transmission of beta-amyloid. J Neurosci 32:8767–8777

    Article  CAS  PubMed  Google Scholar 

  • Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, Castellani RJ, Crain BJ, Davies P, Del Tredici K, Duyckaerts C, Frosch MP, Haroutunian V, Hof PR, Hulette CM, Hyman BT, Iwatsubo T, Jellinger KA, Jicha GA, Kovari E, Kukull WA, Leverenz JB, Love S, Mackenzie IR, Mann DM, Masliah E, McKee AC, Montine TJ, Morris JC, Schneider JA, Sonnen JA, Thal DR, Trojanowski JQ, Troncoso JC, Wisniewski T, Woltjer RL, Beach TG (2012) Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 71:362–381

    Article  PubMed  PubMed Central  Google Scholar 

  • Nisbet RM, Polanco JC, Ittner LM, Gotz J (2015) Tau aggregation and its interplay with amyloid-beta. Acta Neuropathol 129:207–220

    Article  CAS  PubMed  Google Scholar 

  • Panza F, Solfrizzi V, Imbimbo BP, Tortelli R, Santamato A, Logroscino G (2014) Amyloid-based immunotherapy for Alzheimer’s disease in the time of prevention trials: the way forward. Expert Rev Clin Immunol 10:405–419

    Article  CAS  PubMed  Google Scholar 

  • Pedersen JT, Sigurdsson EM (2015) Tau immunotherapy for Alzheimer’s disease. Trends Mol Med 21:394–402

    Article  CAS  PubMed  Google Scholar 

  • Peeraer E, Bottelbergs A, Van Kolen K, Stancu IC, Vasconcelos B, Mahieu M, Duytschaever H, Ver Donck L, Torremans A, Sluydts E, Van Acker N, Kemp JA, Mercken M, Brunden KR, Trojanowski JQ, Dewachter I, Lee VM, Moechars D (2015) Intracerebral injection of preformed synthetic tau fibrils initiates widespread tauopathy and neuronal loss in the brains of tau transgenic mice. Neurobiol Dis 73:83–95

    Article  CAS  PubMed  Google Scholar 

  • Plouffe V, Mohamed NV, Rivest-McGraw J, Bertrand J, Lauzon M, Leclerc N (2012) Hyperphosphorylation and cleavage at D421 enhance tau secretion. PLoS One 7:e36873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pooler AM, Phillips EC, Lau DH, Noble W, Hanger DP (2013a) Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep 14:389–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pooler AM, Polydoro M, Wegmann S, Nicholls SB, Spires-Jones TL, Hyman BT (2013b) Propagation of tau pathology in Alzheimer's disease: identification of novel therapeutic targets. Alzheimers Res Ther 5:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pooler AM, Noble W, Hanger DP (2014) A role for tau at the synapse in Alzheimer’s disease pathogenesis. Neuropharmacology 76 Pt A:1–8

    Article  PubMed  CAS  Google Scholar 

  • Pooler AM, Polydoro M, Maury EA, Nicholls SB, Reddy SM, Wegmann S, William C, Saqran L, Cagsal-Getkin O, Pitstick R, Beier DR, Carlson GA, Spires-Jones TL, Hyman BT (2015) Amyloid accelerates tau propagation and toxicity in a model of early Alzheimer’s disease. Acta Neuropathol Commun 3:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Martin T, Cuchillo-Ibanez I, Noble W, Nyenya F, Anderton BH, Hanger DP (2013) Tau phosphorylation affects its axonal transport and degradation. Neurobiol Aging 34:2146–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(Suppl):S10–S17

    Article  PubMed  CAS  Google Scholar 

  • Sakono M, Zako T (2010) Amyloid oligomers: formation and toxicity of Abeta oligomers. FEBS J 277:1348–1358

    Article  CAS  PubMed  Google Scholar 

  • Saman S, Kim W, Raya M, Visnick Y, Miro S, Saman S, Jackson B, McKee AC, Alvarez VE, Lee NC, Hall GF (2012) Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J Biol Chem 287:3842–3849

    Article  CAS  PubMed  Google Scholar 

  • Sanders DW, Kaufman SK, DeVos SL, Sharma AM, Mirbaha H, Li A, Barker SJ, Foley AC, Thorpe JR, Serpell LC, Miller TM, Grinberg LT, Seeley WW, Diamond MI (2014) Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82:1271–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santa-Maria I, Varghese M, Ksiezak-Reding H, Dzhun A, Wang J, Pasinetti GM (2012) Paired helical filaments from Alzheimer disease brain induce intracellular accumulation of Tau protein in aggresomes. J Biol Chem 287:20522–20533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM (2016) Alzheimer’s disease. Lancet 388(10043):505–517

  • Scholz T, Mandelkow E (2014) Transport and diffusion of Tau protein in neurons. Cell Mol Life Sci 71:3139–3150

    Article  CAS  PubMed  Google Scholar 

  • Schroeder SK, Joly-Amado A, Gordon MN, Morgan D (2016) Tau-directed immunotherapy: a promising strategy for treating Alzheimer’s disease and other tauopathies. J NeuroImmune Pharmacol 11:9–25

    Article  PubMed  Google Scholar 

  • Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sergeant N, Delacourte A, Buee L (2005) Tau protein as a differential biomarker of tauopathies. Biochim Biophys Acta 1739:179–197

    Article  CAS  PubMed  Google Scholar 

  • Sokolow S, Henkins KM, Bilousova T, Gonzalez B, Vinters HV, Miller CA, Cornwell L, Poon WW, Gylys KH (2015) Pre-synaptic C-terminal truncated tau is released from cortical synapses in Alzheimer’s disease. J Neurochem 133:368–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sollvander S, Nikitidou E, Brolin R, Soderberg L, Sehlin D, Lannfelt L, Erlandsson A (2016) Accumulation of amyloid-beta by astrocytes result in enlarged endosomes and microvesicle-induced apoptosis of neurons. Mol Neurodegener 11:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stancu IC, Vasconcelos B, Terwel D, Dewachter I (2014) Models of beta-amyloid induced Tau-pathology: the long and “folded” road to understand the mechanism. Mol Neurodegener 9:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stancu IC, Vasconcelos B, Ris L, Wang P, Villers A, Peeraer E, Buist A, Terwel D, Baatsen P, Oyelami T, Pierrot N, Casteels C, Bormans G, Kienlen-Campard P, Octave JN, Moechars D, Dewachter I (2015) Templated misfolding of Tau by prion-like seeding along neuronal connections impairs neuronal network function and associated behavioral outcomes in Tau transgenic mice. Acta Neuropathol 129:875–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tai HC, Wang BY, Serrano-Pozo A, Frosch MP, Spires-Jones TL, Hyman BT (2014) Frequent and symmetric deposition of misfolded tau oligomers within presynaptic and postsynaptic terminals in Alzheimer’s disease. Acta Neuropathol Commun 2:146

    PubMed  PubMed Central  Google Scholar 

  • Takahashi M, Miyata H, Kametani F, Nonaka T, Akiyama H, Hisanaga S, Hasegawa M (2015) Extracellular association of APP and tau fibrils induces intracellular aggregate formation of tau. Acta Neuropathol 129:895–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda S, Wegmann S, Cho H, DeVos SL, Commins C, Roe AD, Nicholls SB, Carlson GA, Pitstick R, Nobuhara CK, Costantino I, Frosch MP, Müller DJ, Irimia D, Hyman BT (2015) Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer’s disease brain. Nat Commun 6:8490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, Axel L, Rusinek H, Nicholson C, Zlokovic BV, Frangione B, Blennow K, Ménard J, Zetterberg H, Wisniewski T, de Leon MJ (2015) Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol 11:457–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theunis C, Crespo-Biel N, Gafner V, Pihlgren M, Lopez-Deber MP, Reis P, Hickman DT, Adolfsson O, Chuard N, Ndao DM, Borghgraef P, Devijver H, Van Leuven F, Pfeifer A, Muhs A (2013) Efficacy and safety of a liposome-based vaccine against protein Tau, assessed in tau. P301L mice that model tauopathy. PLoS One 8:e72301

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian Q, Zhang JX, Zhang Y, Wu F, Tang Q, Wang C, Shi ZY, Zhang JH, Liu S, Wang Y, Zhang Q, Wang JZ (2009) Biphasic effects of forskolin on tau phosphorylation and spatial memory in rats. J Alzheimers Dis 17:631–642

    Article  CAS  PubMed  Google Scholar 

  • Trinczek B, Biernat J, Baumann K, Mandelkow EM, Mandelkow E (1995) Domains of tau protein, differential phosphorylation, and dynamic instability of microtubules. Mol Biol Cell 6:1887–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu S, Okamoto S, Lipton SA, Xu H (2014) Oligomeric Abeta-induced synaptic dysfunction in Alzheimer’s disease. Mol Neurodegener 9:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Usenovic M, Niroomand S, Drolet RE, Yao L, Gaspar RC, Hatcher NG, Schachter J, Renger JJ, Parmentier-Batteur S (2015) Internalized tau oligomers cause neurodegeneration by inducing accumulation of pathogenic tau in human neurons derived from induced pluripotent stem cells. J Neurosci 35:14234–14250

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos B, Stancu IC, Buist A, Bird M, Wang P, Vanoosthuyse A, Van Kolen K, Verheyen A, Kienlen-Campard P, Octave JN, Baatsen P, Moechars D, Dewachter I (2016) Heterotypic seeding of Tau fibrillization by pre-aggregated Abeta provides potent seeds for prion-like seeding and propagation of Tau-pathology in vivo. Acta Neuropathol 131(4):549–569

  • Villemagne VL, Klunk WE, Mathis CA, Rowe CC, Brooks DJ, Hyman BT, Ikonomovic MD, Ishii K, Jack CR, Jagust WJ, Johnson KA, Koeppe RA, Lowe VJ, Masters CL, Montine TJ, Morris JC, Nordberg A, Petersen RC, Reiman EM, Selkoe DJ, Sperling RA, Van Laere K, Weiner MW, Drzezga A (2012) Abeta imaging: feasible, pertinent, and vital to progress in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 39:209–219

    Article  PubMed  PubMed Central  Google Scholar 

  • Vincent KJ, Zurini M (2012) Current strategies in antibody engineering: Fc engineering and pH-dependent antigen binding, bispecific antibodies and antibody drug conjugates. Biotechnol J 7:1444–1450

    Article  CAS  PubMed  Google Scholar 

  • Viola KL, Klein WL (2015) Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 129:183–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker LC, Jucker M (2015) Neurodegenerative diseases: expanding the prion concept. Annu Rev Neurosci 38:87–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Zhang JY, Liu SJ, Li HL (2008) Overactivated mitogen-activated protein kinase by anisomycin induces tau hyperphosphorylation. Sheng Li Xue Bao 60:485–491

    CAS  PubMed  Google Scholar 

  • Wang Y, Cui J, Sun X, Zhang Y (2011) Tunneling-nanotube development in astrocytes depends on p53 activation. Cell Death Differ 18:732–742

    Article  CAS  PubMed  Google Scholar 

  • Watts JC, Condello C, Stohr J, Oehler A, Lee J, DeArmond SJ, Lannfelt L, Ingelsson M, Giles K, Prusiner SB (2014) Serial propagation of distinct strains of Abeta prions from Alzheimer’s disease patients. Proc Natl Acad Sci U S A 111:10323–10328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilcox KC, Lacor PN, Pitt J, Klein WL (2011) Abeta oligomer-induced synapse degeneration in Alzheimer’s disease. Cell Mol Neurobiol 31:939–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisniewski T, Goni F (2014) Immunotherapy for Alzheimer’s disease. Biochem Pharmacol 88:499–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisniewski T, Goñi F (2015) Immunotherapeutic approaches for Alzheimer’s disease. Neuron 85:1162–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JW, Herman M, Liu L, Simoes S, Acker CM, Figueroa H, Steinberg JI, Margittai M, Kayed R, Zurzolo C, Di Paolo G, Duff KE (2013a) Small misfolded Tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J Biol Chem 288:1856–1870

    Article  CAS  PubMed  Google Scholar 

  • Wu N, Rao X, Gao Y, Wang J, Xu F (2013b) Amyloid-beta deposition and olfactory dysfunction in an Alzheimer’s disease model. J Alzheimers Dis 37:699–712

    CAS  PubMed  Google Scholar 

  • Xiao Y, Ma B, McElheny D, Parthasarathy S, Long F, Hoshi M, Nussinov R, Ishii Y (2015) Abeta(1-42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer's disease. Nat Struct Mol Biol 22:499–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada K, Cirrito JR, Stewart FR, Jiang H, Finn MB, Holmes BB, Binder LI, Mandelkow EM, Diamond MI, Lee VM, Holtzman DM (2011) In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice. J Neurosci 31:13110–13117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–351

    Article  CAS  PubMed  Google Scholar 

  • Yu JT, Tan L, Hardy J (2014) Apolipoprotein E in Alzheimer’s disease: an update. Annu Rev Neurosci 37:79–100

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Terman A, Hallbeck M, Dehvari N, Cowburn RF, Benedikz E, Kagedal K, Cedazo-Minguez A, Marcusson J (2011) Macroautophagy-generated increase of lysosomal amyloid beta-protein mediates oxidant-induced apoptosis of cultured neuroblastoma cells. Autophagy 7:1528–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81471309, 81571245, and 81501103), the Shandong Taishan Scholar, Qingdao Key Health Discipline Development Fund, and Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Tai Yu or Lan Tan.

Ethics declarations

Conflicts of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, ZY., Tan, CC., Yu, JT. et al. Spreading of Pathology in Alzheimer’s Disease. Neurotox Res 32, 707–722 (2017). https://doi.org/10.1007/s12640-017-9765-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-017-9765-2

Keywords

Navigation