Skip to main content
Log in

Tunability of Size, B Doping and Organic Molecular Coupling to Electronic and Optical Properties of Silicon Quantum Dots

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The fascinating realm of silicon quantum dots (Si QDs) has attracted considerable attention for their exceptional optical characteristics and potential applications in the optoelectronic industry. However, there remains a scarcity of research that directly compares the impacts of diverse surface modification methods on the electronic structure and charge transfer properties of Si QD nanomaterials. Considering this scientific challenge, we employ the first-principle calculations to conduct the following investigations. To begin, we have innovatively introduced the concept of the adjacent coordination number (ACN) to establish a quantitative correlation between the band gap (Eg) and the doping sites of boron (B) atoms across various sizes of Si QDs. Additionally, a combination of Total Density of States (TDOS), Partial Density of States (PDOS) and orbital component analysis reveals that the subtle dipole effect near the B-doping site significantly contributes to the reduction in the band gap, providing valuable insights into the complex impact of different doping sites on the electronic arrangement and structure of Si QDs. Ultimately, our absorption spectroscopy, charge transfer and Quantum Theory of Atoms in Molecules (QTAIM) analysis of organic molecule coupling Si QDs reveal the formation of dipoles on the surface and the correlation between charge migration direction and binding sites. This phenomenon not only amplifies the presence of conjugated coupling states but also significantly enhances the charge transfer capability of Si QDs. These valuable insights will provide significant advantages to scientists and researchers endeavoring to tailor the electronic structure and optical attributes of Si QDs using a diverse array of modification techniques to meet specific application requirements.

Graphical Abstract

The surface functionalization of Si QDs involves doping or coupling site selection and the establishment of charge transfer bridges is crucial for the formation of dipole–dipole interaction which may not only play a role in regulating band gap structures but also exert significant control over the charge transfer capacity of Si QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Athinarayanan J, Periasamy VS, Alhazmi M, Alatiah KA, Alshatwi AA (2015) Synthesis of biogenic silica nanoparticles from rice husks for biomedical application. Ceram Int 41:275–281

    Article  CAS  Google Scholar 

  2. Gonzalez M, Salazar F, Trejo A, Miranda Á, Nava R, Antonio Pérez L, Cruz-Irisson M (2023) Exploring the electronic and mechanical properties of lithium-decorated silicon carbide nanowires for energy storage. J Energy Storage 62:106840

    Article  Google Scholar 

  3. Sivasankarapillai VS, Jose J, Shanavas MS, Marathakam A, Uddin MS, Mathew B (2019) Silicon quantum dots: promising theranostic probes for the future. Curr Drug Targets 20:1255–1263. https://doi.org/10.2174/1389450120666190405152315

    Article  CAS  PubMed  Google Scholar 

  4. Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC (2010) Chem Rev 110:6873–6890

    Article  CAS  PubMed  Google Scholar 

  5. Samanta A, Das D (2011) J Mater Chem 21:7452

    Article  CAS  Google Scholar 

  6. Dong YP, Wang J, Peng Y, Zhu JJ (2017) Biosens Bioelectron 89:1053–1058

    Article  CAS  PubMed  Google Scholar 

  7. Hao XJ, Cho EC, Scardera G, Bellet-Amalric E, Bellet D, Shen YS, Huang S, Huang YD, Conibeer G, Green MA (2009) Thin Solid Films 517:5646–5652

    Article  CAS  Google Scholar 

  8. McVey BFP, Tilley RD (2014) Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals. Acc Chem Res 47:3045–3051

    Article  CAS  PubMed  Google Scholar 

  9. Liu J, Liu B, Zhang XS, Guo XJ, Liu SZ (2017) Effect of argon flow on promoting boron doping for in-situ grown silicon nitride thin films containing silicon quantum dots. Nanotechnology. 28:285202

    Article  PubMed  Google Scholar 

  10. Zanatta AR (2019) Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination. Sci Rep 9:11225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maeda M, Imamura K, Matsumoto T, Kobayashi H (2014) Fabrication of Si nanoparticles from Si swarf and application to solar cells. Appl Surf Sci 312:39–42

    Article  CAS  Google Scholar 

  12. Wang T, Gong J (2015) Single-crystal semiconductors with narrow band gaps for solar water splitting. Angew Chem Int Ed 54:10718–10732

    Article  CAS  Google Scholar 

  13. Dohnalová K, Greorkiewicz T, Kůsová K (2014) Silicon quantum dots: surface matters. J Phys Condens Matter 26:173201

    Article  PubMed  Google Scholar 

  14. Carroll GM, Limpens R, Neale NR (2018) Tuning confinement in colloidal silicon nanocrystals with saturated surface ligands. Nano Lett 18:3118–3124

    Article  CAS  PubMed  Google Scholar 

  15. Ni Z, Zhou S, Zhao S, Peng W, Yang D, Pi X (2019) Silicon nanocrystals: unfading silicon materials for optoelectronics. Mater Sci Eng R 138:85–117

    Article  Google Scholar 

  16. Brus LE (1984) Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80:4403–4409

    Article  CAS  Google Scholar 

  17. Singh M, Taele BM, Goyal M (2021) Modeling of size and shape dependent band gap, dielectric constant and phonon frequency of semiconductor nanosolids. Chin J Phys 70:26–36

    Article  CAS  Google Scholar 

  18. Molla MZ, Zhigunov D, Noda S, Samukawa S (2019) Structural optimization and quantum size effect of Si nanocrystals in SiC interlayer fabricated with biotemplate. Mater Res Express 6:065059

    Article  CAS  Google Scholar 

  19. Hemaprabha E, Pandey UK, Chattopadhyay K, Ramamurthy PC (2018) Doped silicon nanoparticles for enhanced charge transportation in organic-inorganic hybrid solar cells. Sol Energy 173:744–751

    Article  CAS  Google Scholar 

  20. Annathurai S, Chidambaram S, Rathinam M, Venkatesan G (2019) Ga doping improved electrical properties in p-Si/n-ZnO heterojunction diodes. J Mater Sci 30:5923–5928

    CAS  Google Scholar 

  21. Li D, Xu J, Zhang P, Jiang Y, Chen K (2018) Doping effect in Si nanocrystals. J Phys D 51:233002

    Article  Google Scholar 

  22. Pi X, Ni Z, Liu Y, Ruan Z, Xu M, Yang D (2015) Density functional theory study on boron- and phosphorus-doped hydrogen-passivated silicene. Phys Chem Chem Phys 17:4146–4151

    Article  CAS  PubMed  Google Scholar 

  23. Shaalan NM, Hamad D, Abdel-Latief AY, Abdel-Rahim MA (2016) Preparation of quantum size of tin oxide: structural and physical characterization. Prog Nat Sci 26:145–151

    Article  CAS  Google Scholar 

  24. Kramer NJ, Schramke KS, Kortshagen UR (2015) Plasmonic properties of silicon nanocrystals doped with boron and phosphorus. Nano Lett 15:5597–5603

    Article  CAS  PubMed  Google Scholar 

  25. Zhou S, Ni Z, Ding Y, Sugaya M, Pi X, Nozaki T (2016) Ligand-free, colloidal, and plasmonic silicon nanocrystals heavily doped with boron. ACS Photonics 3:415–422

    Article  CAS  Google Scholar 

  26. Clark JS, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Krist-Cryst Mater 220:567–570

    Article  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision E.01. Gaussian Inc, Wallingford CT

    Google Scholar 

  28. Delgado A, Korkusinski M, Hawrylak P (2020) Theory of atomic scale quantum dots in silicon: Dangling bond quantum dots on silicon surface. Solid State Commun 305:113752

    Article  CAS  Google Scholar 

  29. Pérez M, Ramos E, de la Mora MB, Santana G, Dutt A (2021) Absorption and emission of porous silicon based on quantum dots models by TD-DFT: Experimental and theoretical approach. Mater Lett 302:130411

    Article  Google Scholar 

  30. Asif M, Sajid H, Ayub K, Gilani MA, Mahmood T (2022) Highly accurate DFT investigation for triggering the ultra-strong static and dynamic nonlinear optical properties of superalkali doped aminated graphdiyne (NH2-GDY) donor–acceptor (D–A) quantum dots. Polyhedron 215:115695

    Article  CAS  Google Scholar 

  31. Allangawi A, Sajid H, Ayub K, Gilani MA, Akhter MS, Mahmood T (2023) High drug carrying efficiency of boron-doped Triazine based covalent organic framework toward anti-cancer tegafur; a theoretical perspective. Comput Theor Chem 1220:113990

    Article  CAS  Google Scholar 

  32. Li M, Li JC (2006) Size effects on the band-gap of semiconductor compounds. Mater Lett 60:2526–2529

    Article  CAS  Google Scholar 

  33. Li H, Du HN, He XW, Shen YY, Wang YC, Zhang HX (2019) Site discrimination and size effect of B-doping in Si nanocrystals by second-neighbor atom consideration. J Appl Phys 126:125117

    Article  Google Scholar 

  34. Tian L, Chen FW (2011) Calculation of molecular orbital composition. Acta Chim Sinica 69:2393

    Google Scholar 

  35. Ma J, Wei SH, Neale NR, Nozik AJ (2011) Effect of surface passivation on dopant distribution in Si quantum dots: The case of B and P doping. Appl Phys Lett 98:173103

    Article  Google Scholar 

  36. Wang K, Cline RP, Schwan J (2023) Efficient photon upconversion enabled by strong coupling between silicon quantum dots and anthracene. Nat Chem 15:1172–1178

    Article  CAS  PubMed  Google Scholar 

  37. Zhang YM, Xiao MJ, Su N, Zhong J, Tan H, Wang YF, Liu Y, Pei Y, Yang RQ, Zhu WG (2015) Efficient strategies to improve photovoltaic performance of linear-shape molecules by introducing large planar aryls in molecular center and terminals. Org Electron 17:198–207

    Article  Google Scholar 

  38. Duan XW, Xiao MJ, Chen JH, Wang XD, Peng WH, Duan LR, Tan H, Lei GT, Yang RQ, Zhu WG (2015) Improving photovoltaic performance of the linear a-Ar-a-type small molecules with diketopyrropyrrole arms by tuning the linkage position of the Anthracene core. ACS Appl Mater Interfaces 7:18292–18299

    Article  CAS  PubMed  Google Scholar 

  39. Chen JH, Duan LR, Xiao MJ, Wang Q, Liu B, Xia H, Yang RQ, Zhu WG (2016) Tuning the central fused ring and terminal units to improve the photovoltaic performance of Ar(A–D)2 type small molecules in solution-processed organic solar cells. J Mater Chem A 4:4952–4961

    Article  CAS  Google Scholar 

  40. Deng JY, Chen JH, Tao Q, Yan D, Fu YF, Tan H (2018) Improved photovoltaic performance of 2,7-pyrene based small molecules via the use of 3-carbazole as terminal unit. Tetrahedron 74:3989–3995

    Article  CAS  Google Scholar 

  41. Tao Q, Yan D, Liao YF, Huang XW, Deng JY, Yu DH (2019) Synthesis and photovoltaic performance of Anthracene-based small molecules for solution-processed organic solar cells. Chem Select 4:752–758

    CAS  Google Scholar 

  42. Engelhardt F, Maa C, Andrada DM, Regine HI, Stalke D (2018) Benchmarking lithium amide versus amine bonding by charge density and energy decomposition analysis arguments. Chem Sci 9:3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Daniil MI, Sergey VB, Alexander SN, Galina R, Nadezhda AB, Robert AE, Vadim YK (2020) Noncovalent sulfoxide−nitrile coupling involving four-center heteroleptic dipole−dipole interactions between the sulfinyl and nitrile groups. Cryst Growth Des 20:3417–3428

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank the financial support from the National Natural Science Foundation of China (No. 21903059) and the Natural Science Foundation of Shanxi Province (No. 201901D211093)

Funding

The National Natural Science Foundation of China (No. 21903059) and the Natural Science Foundation of Shanxi Province (No. 201901D211093).

Author information

Authors and Affiliations

Authors

Contributions

Wenjing Yang wrote the main manuscript; Jiale Gao completed the calculations in the second part and all figures; Xiangsen Luan completed all tables; Hui Li completed the calculations in the first part.

Corresponding author

Correspondence to Hui Li.

Ethics declarations

Ethics Approval

This paper does not violate any ethical and moral issues.

Consent to Participate

All authors agree to participate in the paper.

Consent for Publication

All authors agree to publish the paper.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3601 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Gao, J., Luan, X. et al. Tunability of Size, B Doping and Organic Molecular Coupling to Electronic and Optical Properties of Silicon Quantum Dots. Silicon 16, 2593–2605 (2024). https://doi.org/10.1007/s12633-024-02865-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-024-02865-5

Keywords

Navigation