Skip to main content
Log in

Study of Analog/Rf and Stability Investigation of Surrounded Gate Junctionless Graded Channel MOSFET(SJLGC MOSFET)

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper explores the potential advantage of surrounded gate junctionless graded channel (SJLGC) MOSFET in the view of its Analog, RF performances using ATLAS TCAD device simulator. The impact of graded channel in the lateral direction on the potential, electric field, and velocity of carriers, energy band along the channel is investigated systematically. The present work mainly emphasises on the superior performance of SJLGC MOSFET by showing higher drain current (ID), transconductance (gm) ,cut off frequency (fT), maximum frequency of oscillation (fmax), critical frequency (fK) .The drain current is improved by 10.03 % in SJLGC MOSFET due to the impact of grading the channel. There is an improvement in fT, fmax, fK by 45 %, 29 % and 18 % respectively in SJLGC MOSFET showing better RF Performance. The dominance of the SJLGC MOSFET over SJL MOSFET is further elucidated by showing 74 % improvement in intrinsic voltage gain (gm/gds) indicating its better applications in sub threshold region. But the transconductance generation factor of SJLGC MOSFET is less than SJL MOSFET in the subthreshold region. The intrinsic gate delay (ζD) of SJLGC MOSFET is less in comparison to SJL MOSFET due to the impact of lower gate to gate capacitance (CGG) suggesting better digital switching applications. The simulation results reveal that SJLGC MOSFET can be a competitive contender for the coming generation of RF circuits covering a broad range of operating frequencies in RF spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article, its supplementary materials or below mentioned references.

References

  1. Dennard RH, Gaensslen FH, Yu HN et al (1974) Design of ion-implanted MOSFET’s with very small physical dimensions. J Solid State Circuits 9(5):256

    Article  Google Scholar 

  2. Colinge JP (2004) Multiple-gate SOI MOSFETs. Solid State Electron 48(6):897

  3. Nitayami A, Takato H, Okabe N, Sunouchi K et al (1991) Multi-pillar Surrounded Gate Transistor(M-SGT) for compact and High-Speed Circuits. IEEE Trans Electron Devices 38(3):579

  4. Takato H, Sunouchi K, Okabe N et al (1991) Impact of Surrounding Gate Transistor(SGT) for Ultra-High-density LSI’s. IEEE Trans Electron Devices 38(3):573

  5. Watanabe S, Tsuchida K, Takashima D et al (1995) A novel circuit technology with Surrounding Gate Transistors (SGTs) for ultra high density DRAM’s. IEEE J Solid State Circuits 30(9):960

    Article  Google Scholar 

  6. Okumura Y, Shirahata M, Hachisuka A et al (1992) Source-Drain Non uniformly Doped Channel (NUDC) MOSFET structure for high current drivability and threshold voltage controllability. IEEE Trans Electron Devices 39(11):2541

    Article  Google Scholar 

  7. Lee CW, Borne A, Ferain I et al (2010) High Temperature performance of silicon junctionless MOSFETs. IEEE Trans Electron Devices 57(3):620

  8. Cho S, Park SH, Park BG et al (2011) Sillicon-compatible bulk-type compound junctionless field-effect transistor in proc. ISDRS

  9. Gupta SK, Baishya S (2013) Novel characteristics of Junctionless Dual Metal Cylindrical Surround Gate (JLDM-CSG) MOSFETs. Res J Recent Sci 2(1):44

    Google Scholar 

  10. Zeghbroeek BV (2011) Principle of semiconductor device, online

  11. Colinge JP, Kranti A, Yan R et al (2011) Junctionless Nanowire Transistor (JNT): Properties and design guidelines. Solid State Electron 65–66:33

    Article  Google Scholar 

  12. Martin MJ, Pascual E, Rengal R (2012) RF dynamics and noise performance of metallic source/drain SOI n-MOSFETs. Solid State Electron 73(6):64

  13. Kumar M, Haldar S, Gupta M et al (2014) A new T-Shaped Source/Drain Extension (T-SSDE) Gate Underlap GAA MOSFET with enhance subthreshold analog/RF performance for low power applications. Solid State Electron 101:13

    Article  CAS  Google Scholar 

  14. Doria RT, Pavanello MA, Trevisoli RD et al (2011) Junctionless multiple – gate transistors for analog applications. IEEE Trans Electron Devices 58(8):2511

  15. Kumar M, Haldar S, Gupta M et al (2014) Impact of gate material (GME) on analog/RF performance of nanowire Schotty barrier gate all around MOSFETs for low power wireless applications:3D T-CAD simulation. Microelectron J 45(11):1508

  16. Chen X, Ouyang QC, Wang G et al (2002) Improved hot carriers and short channel performance in vertical nMOSFETs with graded channel doping. IEEE Trans Electron Devices 49(11):1967

    Google Scholar 

  17. Kumar M, Syamal N, Sarkar B et al (2010) Influence of channel and gate engineering on the analog and RF performance of DG MOSFETs. IEEE Trans Electron Devices 57(4):820

    Article  Google Scholar 

  18. Sharma RK, Bucher M (2012) Device design engineering for optimum analog/RF performance of nanoscale DG MOSFETs. IEEE Trans Nanotechnol 11(5):992

  19. Chen Y, Mohamad M, Jo M et al (2013) Junctionless MOSFETs with laterally graded-doping channel for analog/ RF applications. J Comput Electron 12(4):757

  20. Kranti A, Chung TM, Flandre D et al (2004) Laterally asymmetric channel engineering in fully depleted double gate SOI MOSFETs for high performance analog applications. Solid State Electron 48(6):947

  21. Pavanello MA, Martine JA, Flandre D (2002) Analog circuit design using graded channel silicon-on- insulator n MOSFETs. Solid State Electron 46(8):1215

  22. Swain SK, Dutta A, Adak S et al (2016) Influence of channel and high-k oxide thickness on subthreshold analog/RF performance of graded channel and gate stack DG-MOSFETs. Microelectron Reliab 61:24

  23. Kilchytska V, Levacq D, Leader D et al (2003) Floating effective back gate effective effect on the small signal output conductance of SOI MOSFETs. IEEE Electron Devices Letters 24(3):414

  24. Larson LE (2003) Silicon technology trade offs for radio – frequency /mixed-signal “Systems-on-a-chip”. IEEE Trans Electron Devices 50(3):683

  25. Biswal SM, Baral B, De D et al (2016) Study of effect of gate length downscaling on the analog/RF performance and linearity investigation of InAs based nanowire tunnel FET. Superlattic Microstruct 91:319

    Article  CAS  Google Scholar 

  26. Kang S, Choi B, Kim B (2003) Linearity analysis of CMOS for RF application. IEEE Trans Microw Theory Tech 51(3):972

    Article  Google Scholar 

  27. Gautam R, Saxena M, Gupta RS et al (2012) Effect of localized charges on Nanoscale Cylindrical Surrounding Gate MOSFET: Analog performance and linearity analysis. Microelectron Reliab 52(6):989

    Article  CAS  Google Scholar 

  28. Baral B, Biswal SM et al (2017) Radio frequency/analog and linearity performance of a junctionless double gate metal-oxide-semiconductor field effect transistor. SAGE Publication 93(11):985

  29. Kaya S, Ma W (2004) Optimization of RF linearity in DG-MOSFETs. IEEE Electron Dev Lett 25(5):308

  30. Biswas K, Sarkar A, Sarkar CK (2015) Impact of barrier thickness on Analog RF and Linearity performance of nanoscale DG heterostructure MOSFET. Superlattices Microstruct MOSFET 86:95

    Article  CAS  Google Scholar 

  31. Semiconductor Industry Association (2011) International technology roadmap for semiconductors. SIA. San Jose

  32. Lou H, Zhu L, Lin Y et al (2012) A junctionless nanowire transistor with a dual-material gate. IEEE Trans Electron Devices 59(7):1829

  33. Rengal R, Martin MJ (2010) Electronic transport in laterally asymmetric channel MOSFET for RF analog applications. IEEE Trans Electron Devices 57(10):2448

    Article  Google Scholar 

  34. (2012) SILVACO Int, Santa Clara, ATLAS 3D DEVICE Simulator

  35. Jena B, Pradhan P, Kumar et al (2015) Investigation on cylindrical Gate all around (GAA) to nanowire MOSFET for circuit application. Facta Universitatis 28(4):637

  36. Ray D, Biswas A (2017) Sidewall spacer layer engineering for improvement of analog/RF Performance of nanoscale double gate junctionless transistors. Microsyst Technol 23(4):2847

  37. Biswal SM, Baral B, De D, Sarkar A (2015) Analytical subthreshold modeling of dual material gate engineered nano-scale junctionless surrounding gate MOSFET considering ECPE. Superlattices Microstruct 82(1):103–112

  38. Duarte JP, Kim MS, Choi SJ et al (2012) A compact model of quantum electron density at the subthreshold region for double-gate junctionless transistors. IEEE Trans Electron Devices 59(4):1008

  39. Choi S, Moon D, Kim S et al (2011) Sensitivity of threshold voltage to Nanowire width variation in junctionless transistors. IEEE Electron Dev Lett 32(2):125

  40. Gnani E, Reggiani S, et al (2006) Effects of the band structure modification in silicon nanowires with small diameters Solid State Device Research Conference, 170

  41. Omura Y, Horiguchi S et al (1993) Quantum-mechanical effects on the threshold voltage of ultrathin-SOI n MOSFETs. IEEE Electron Device Letter 14(12):569

  42. He J, Zhang G et al (2006) A carrier based DCIV model for long channel undoped cylindrical surrounding gate MOSFETs. Solid State Electron 50(3):416

  43. Colinge JP, Alderman JC et al (2006) Quantum mechanical effects in trigate SOI MOSFETs. IEEE Trans Electron Devices 53(5):1131

  44. Hu G, Xiang P, Ding Z, Liu R, Wang L, Tang TA (2014) Analytical models for electric potential, threshold voltage, and subthreshold swing of junctionless surroundinggate transistors. IEEE Trans Electron Devices 61(3):688–695

  45. Colinge JP, Lee CW, Afzalian A, Akhavan ND, Yan R, Ferain I, Razavi P, O'neill B, Blake A, White M, Kelleher AM (2010) Nanowire transistors without junctions. Nature nanotechnology 5(3):225–229

  46. Iannaccone G, Curatola G, Fiori G (2004) Bohm quantum potential for device simulation based on drift-diffusion and energy transport. SISPAD

  47. Abdi MA, Djeffal F et al (2011) A two-dimensional analytical subthreshold behavior analysis including hot-carrier effect for nanoscale Gate Stack Gate All Around (GASGAA) MOSFETs. J Comput Electron 10(1–2):179

  48. Baruah Ratul K, Paily Roy P (2014) A dual-material gate junctionless transistor with high-k spacer for enhanced analog performance. IEEE Trans Electron Devices 61(1):123

    Article  Google Scholar 

  49. Pal Arobinda S, Angsuman (2014) Analytical study of dual material surrounding gate MOSFET to suppress short-channel effects (SCEs). Elsevier, Eng Sci Technol 17(4):205–212

  50. Sahay S, Kumar MJ (2017) Nanotube junctionless FET: Proposal, Design and Investigation. IEEE Trans Electron Devices 64(4):1851

  51. Fan J, Li M, Xu X et al (2015) Insight in to gate-induced drain leakage in silicon nanowire transistors. IEEE Trans Electron Devices 62(1):213

  52. Chaudhry A, Kumar MJ et al (2004) Investigation of novel attributes of a fully depleted dual-material gate SOI MOSFET. IEEE Trans Electron Devices 51(9):1463

  53. Basak A, Sarkar A (2020) Impact of back gate work function for enhancement of analog/RF performance of AJDMDG stacks MOSFET. Solid State Electron Lett 2:117

    Article  Google Scholar 

  54. Kwon I, Je M, Lee K et al (2002) A simple and analytical parameter –extraction method of a Microwave MOSFET. IEEE Trans on Microwave theory Techniques 50(6):1503

  55. Cho S, Kim KR, Park BG, Kang IM (2011) RF performance and small-signal parameter extraction of junctionless silicon nanowire MOSFETs. IEEE Trans Electron Devices 58(5):1388–1396

  56. Sarkar A, De S, Dey A et al (2012) Analog and RF Performance investigation of cylindrical surrounding gate MOSFET with an analytical pseudo-2D model. J Comput Electron 11:182

  57. Gupta N, Kumar A, Chaujar R et al (2015) Impact of device parameter variation in RF performance of gate electrode work function engineered (GEWE)-Sillicon nanowire (siNW) MOSFET. J Comput Electron 14(3):798

  58. Khakifirooz A, Antoniadis DA (2008) MOSFET Performance Scaling part- I: historical trends. IEEE Trans Electron Devices 55(6):1391

  59. Biswal SM, Das SK, Misra S, Nanda U, Jena B (2021) .Study on Analog/RF and linearity performance of staggered Hetero junction Gate stack Tunnel FET. ECS J Solid State Sci Technol 10(7):073001

    Article  CAS  Google Scholar 

  60. Biswal SM, Baral B, De D, Sarkar A (2019) Simulation and comparative study on analog/RF and linearity performance of III-V semiconductor –based staggered hetero junction In As nanowire Tunnel FET. Microsyst Technol 25(5):1855

  61. Biswas K, Sarkar A, Sarkar CK (2018) Fin shape influence on analog and RF performance of junctionless accumulation mode bulk Fin FETs. Microsyst Technol 24(5):2317

    Article  CAS  Google Scholar 

  62. Sze SM, K Ng Kwok. Physics of semiconductor devices. 3rd edn, Wiley Publication, Hoboken. ISBN: 978-0-0471-14323-9

  63. Sarkar A, Das AK, De S et al (2012) Effect of gate engineering in double-gate MOSFETs for analog/RF applications. Microelectronics 43(11):873

  64. Tetsuya S (2008) Analysis of Intrinsic and parasitic Gate delay of InGaAs. HEMTs ECS Trans 16(7):65

    Article  Google Scholar 

  65. Mohapatra M, De T, Panda AK (2019) Nanoscale T-shaped ALGaN/ GaN HEMT with improved DC and RF performance. Int J Nanoparticles 11(2):113

    Article  CAS  Google Scholar 

  66. Voinigescu S (2013) High-frequency integrated circuits. Cambridge University Press, Cambridge

    Book  Google Scholar 

  67. Oh Y, Oh J, Rieh JS (2013) Effect of device layout on the stability of RF MOSFETs. IEEE Trans Microw Theory Tech 61(5):1861

  68. Ghosh P, Haldar S, Gupta RS, Gupta M (2012) An accurate small signal modeling of cylindrical/surrounded gate MOSFET for high frequency applications J Semicond Technol Sci 12(4):377–387

  69. Raju V, Sivasankaran K (2018) Impact of high K spacer on RF stability performance of double gate junctionless transistor. Int J Numer Model: Electron Netw Devices Fields 32(1):2481

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sarita Misra,Sudhansu Mohan Biswal - Conceptualization, methodology, simulation and investigation,

Biswajit Baral,Sanjit Kumar Swain - Writing original draft preparation, reviewing and editing, Sudhansu.

Kumar Pati -Validation and overall correction.

Corresponding author

Correspondence to Sudhansu Mohan Biswal.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Consent to Participate

All authors freely agreed and gave their consent to participate on this work.

Consent for Publication

All authors freely agreed and gave their consent for the publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The proposed device exhibits the potential advantage of having surrounded gate, junctionless, graded channel architecture.

• Comparison of center potential, electric field, average velocity, energy band diagram of surrounded gate junctionless graded channel (SJLGC) MOSFET (SJLGC) with surrounded gate junctionless (SJL) MOSFET.

• Systematic Comparison of Analog/RF performances of SJLGC MOSFET and SJL MOSFET.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, S., Biswal, S.M., Baral, B. et al. Study of Analog/Rf and Stability Investigation of Surrounded Gate Junctionless Graded Channel MOSFET(SJLGC MOSFET). Silicon 14, 6391–6402 (2022). https://doi.org/10.1007/s12633-021-01397-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01397-6

Keywords

Navigation