Skip to main content
Log in

A review of the strengthening—toughening behavior and mechanisms of advanced structural materials by multifield coupling treatment

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The application of an external field is a promising method to control the microstructure of materials, leading to their improved performance. In the present paper, the strengthening and toughening behavior of some typical high-performance structural materials subjected to multifield coupling treatment, including electrostatic field, electro-pulse current, thermal field, and stress field, are reviewed in detail. In addition to the general observation that the plasticity of materials could be increased by multi-external fields, strength enhancement can be achieved by controlling atomic diffusion or phase transformations. The paper is not limited to the strengthening and toughening mechanisms of the multifield coupling effects on different types of structural materials but is intended to provide a generic method to improve both the strength and ductility of the materials. Finally, the prospects of the applications of multi-external fields have also been proposed based on current works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.J. Noell, J.M. Rodelas, Z.N. Ghanbari, and C.M. Laursen, Microstructural modification of additively manufactured metals by electropulsing, Addit. Manuf., 33(2020), art. No. 101128.

  2. L. Zhang, X. Guo, J.W. Gao, A.Y. Deng, and E.G. Wang, Effect of electromagnetic stirring on microstructure and mechanical properties of TiB2 particle-reinforced steel, Acta Metall. Sin., 56(2020), No. 9, p. 1239.

    CAS  Google Scholar 

  3. Y.C. Liu, F. Sommer, and E.J. Mittemeijer, Austenite-ferrite transformation kinetics under uniaxial compressive stress in Fe-2.96 at.% Ni alloy, Acta Mater., 57(2009), No. 9, p. 2858.

    Article  CAS  Google Scholar 

  4. X. Zhang, H.W. Li, M. Zhan, Z.B. Zheng, J. Gao, and G.D. Shao, Electron force-induced dislocations annihilation and regeneration of a superalloy through electrical in situ transmission electron microscopy observations, J. Mater. Sci. Technol., 36(2020), p. 79.

    Article  Google Scholar 

  5. Y.T. Wu, C. Li, Y.F. Li, J. Wu, X.C. Xia, and Y.C. Liu, Effects of heat treatment on the microstructure and mechanical properties of Ni3Al-based superalloys: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 553.

    Article  CAS  Google Scholar 

  6. D. Wu, W.L. Wang, L.G. Zhang, Z.Y. Wang, K.C. Zhou, and L.B. Liu, Erratum to: New high-strength Ti-Al-V-Mo alloy: From high-throughput composition design to mechanical properties, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 129.

    Article  Google Scholar 

  7. Y.F. Wu, X.L. Zhang, X.F. Xu, X.W. Lin, and L. Liu, A review on the effect of external fields on solidification, melting and heat transfer enhancement of phase change materials, J. Energy Storage, 31(2020), art. No. 101567.

  8. Y.Q. Li, B. Li, D. Zhang, and L.F. Xie, External electric field induced structural transformation and decreased sensitivity of CL-20/EPDM composites, Chem. Phys. Lett., 757(2020), art. No. 137875.

  9. J.Q. Hao, S.Y. Qin, L.G. Yan, and X.F. Zhang, Breaking thermodynamic and kinetic barriers in superalloy homogenization process by electropulsing to improve mechanical properties, J. Alloys Compd., 873(2021), art. No. 159854.

  10. F. Maccari, D.Y. Karpenkov, E. Semenova, A.Y. Karpenkov, I.A. Radulov, K.P. Skokov, and O. Gutfleisch, Accelerated crystallization and phase formation in Fe40Ni40B20 by electric current assisted annealing technique, J. Alloys Compd., 836(2020), art. No. 155338.

  11. D. Waryoba, Z. Islam, B.M. Wang, and A. Haque, Recrystallization mechanisms of Zircaloy-4 alloy annealed by electric current, J. Alloys Compd., 820(2020), art. No. 153409.

  12. X.G. Zheng, Y.N. Shi, and K. Lu, Electro-healing cracks in nickel, Mater. Sci. Eng. A, 561(2013), p. 52.

    Article  CAS  Google Scholar 

  13. Y.G. Zhao, B.D. Ma, H.C. Guo, J. Ma, Q. Yang, and J.S. Song, Electropulsing strengthened 2GPa boron steel with good ductility, Mater. Des., 43(2013), p. 195.

    Article  CAS  Google Scholar 

  14. H.X. Zhang and X.F. Zhang, Softening behavior of Al-Zn-Mg alloys with different strengthening mechanisms in a coupled field, Mater. Sci. Eng. A, 771(2020), art. No. 138582.

  15. R.F. Zhu, J.N. Liu, G.Y. Tang, S.Q. Shi, and M.W. Fu, Properties, microstructure and texture evolution of cold rolled Cu strips under electropulsing treatment, J. Alloys Compd., 544(2012), p. 203.

    Article  CAS  Google Scholar 

  16. Y.H. Zhu, S. To, W.B. Lee, X.M. Liu, Y.B. Jiang, and G.Y. Tang, Effects of dynamic electropulsing on microstructure and elongation of a Zn-Al alloy, Mater. Sci. Eng. A, 501(2009), No. 1–2, p. 125.

    Article  Google Scholar 

  17. D.D. Ben, H.J. Yang, Y.R. Ma, X.H. Shao, J.C. Pang, and Z.F. Zhang, Rapid hardening of AISI 4340 steel induced by electropulsing treatment, Mater. Sci. Eng. A, 725(2018), p. 28.

    Article  CAS  Google Scholar 

  18. B. Kinsey, G. Cullen, A. Jordan, and S. Mates, Investigation of electroplastic effect at high deformation rates for 304SS and Ti-6Al-4V, CIRP Ann., 62(2013), No. 1, p. 279.

    Article  Google Scholar 

  19. P.S. McNeff and B.K. Paul, Electroplasticity effects in Haynes 230, J. Alloys Compd., 829(2020), art. No. 154438.

  20. Y.V. Baranov, Effect of electrostatic fields on mechanical characteristics and structure of metals and alloys, Mater. Sci. Eng. A, 287(2000), No. 2, p. 288.

    Article  Google Scholar 

  21. V.S. Savenko, Hardening of a bismuth crystal due to electroplastic deformation, Met. Sci. Heat Treat., 49(2007), No. 3–4, p. 147.

    Article  CAS  Google Scholar 

  22. J.Y. Li, P. Ni, L. Wang, and Y. Tan, Influence of direct electric current on solidification process of Al-Si alloy, Mater. Sci. Semicond. Process., 61(2017), p. 79.

    Article  CAS  Google Scholar 

  23. M.J. Li, T. Tamura, N. Omura, and K.J. Miwa, Effects of magnetic field and electric current on the solidification of AZ91D magnesium alloys using an electromagnetic vibration technique, J. Alloys Compd., 487(2009), No. 1–2, p. 187.

    Article  CAS  Google Scholar 

  24. R.Z. Wang, J.G. Qi, B. Wang, W. Zhang, and J.Z. Wang, Solidification behavior and crystal growth mechanism of aluminum under electric pulse, J. Mater. Process. Technol., 237(2016), p. 235.

    Article  CAS  Google Scholar 

  25. H. Conrad, Effects of electric current on solid state phase transformations in metals, Mater. Sci. Eng. A, 287(2000), No. 2, p. 227.

    Article  Google Scholar 

  26. Z. Qiao, C. Li, H.J. Zhang, H.Y. Liang, Y.C. Liu, and Y. Zhang, Evaluation on elevated-temperature stability of modified 718-type alloys with varied phase configurations, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1123.

    Article  CAS  Google Scholar 

  27. B. Diepold, N. Vorlaufer, S. Neumeier, T. Gartner, and M. Göken, Optimization of the heat treatment of additively manufactured Ni-base superalloy IN718, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 640.

    Article  CAS  Google Scholar 

  28. L. Wang, Y. Liu, T. Cui, and X. Zhao, Effects of electric-field treatment on a Ni-base superalloy, Rare Met., 26(2007), Suppl. 1, p. 210.

    CAS  Google Scholar 

  29. Y. Liu, L. Wang, Y. Ding, T. Cui, and Y.Q. Wang, Effects of electric field treatment on microstructure and deformation behavior of GH4199 superalloy, Chin. J. Nonferrous Met., 16(2006), No. 10, p. 1749.

    CAS  Google Scholar 

  30. Y. Liu, L. Wang, X.Y. Qiao, and Y.Q. Wang, Effects of strain rate on tensile deformation behavior of GH4199 superalloy after electric field treatment, Rare Met. Mater. Eng., 37(2008), No. 1, p. 66.

    Google Scholar 

  31. Y. Liu, Effects of Electric-Field Treatment on the Microstructure Evolution, Deformation Behavior and Corrosion Properties of Nickel-base Superalloys [Dissertation], Northeastern University, Shenyang, 2008.

    Google Scholar 

  32. D. Yuan, L. Wang, Y. Liu, X. Song, and C. Liu, Study on tensile property and dynamic recrystallization of GH4169 alloy with pulse current at elevated temperatures, [in] Proceedings of the 13th China Annual Meeting of Superalloy, Beijing, 2015, p. 343.

  33. Y. Liu, L. Wang, H.H. Liu, X.D. Lu, and B.J. Zhang, Effects of pulse current on dynamic recrystallization behavior of GH4169 superalloy, Mater. Trans., 53(2012), No. 8, p. 1400.

    Article  CAS  Google Scholar 

  34. J.L. An, L. Wang, X. Song, and Y. Liu, New approach for plastic deformation behavior of GH4169 superalloy with in situ electric-pulse current at 800 °C, Mater. Sci. Eng. A, 707(2017), p. 356.

    Article  CAS  Google Scholar 

  35. L. Wang, J.L. An, Y. Liu, and X. Song, Deformation behavior and strengthening—toughening mechanism of GH4169 alloy with multi-field coupling, Acta Metall. Sin., 55(2019), No. 9, p. 1185.

    CAS  Google Scholar 

  36. G.D. Li, L. Wang, Y. Liu, W. Zhang, X.Y. Qiao, and Y.Q. Wang, Effects of high density electropulsing treatment on aging kinetics of GH4199 alloy, Rare Met. Mater. Eng., 40(2011), No. 6, p. 961.

    Article  CAS  Google Scholar 

  37. S.Y. Qin, L.G. Yan, and X.F. Zhang, Eliminating topologically closed-packed phases in deteriorated nickel-based superalloy by pulsed electric current, J. Alloys Compd., 862(2021), art. No. 158508.

  38. S.Y. Qin, J.Q. Hao, L.G. Yan, and X.F. Zhang, Ultrafast solution treatment to improve the comprehensive mechanical properties of superalloy by pulsed electric current, Scripta Mater., 199(2021), art. No. 113879.

  39. Z. Zhang, J.H. Zhang, J. Wang, Z.H. Li, J.S. Xie, S.J. Liu, K. Guan, and R.Z. Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30.

    Article  CAS  Google Scholar 

  40. G.Z. Kang and H. Li, Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 567.

    Article  Google Scholar 

  41. J. Wang, L. Wang, Y. Liu, J.L. An, and X. Song, Tensile deformation behavior and microstructure evolution of AZ31 magnesium alloy under pulse current, Rare Met. Mater. Eng., 47(2018), No. 6, p. 1906.

    CAS  Google Scholar 

  42. H.Y. Xie, Q. Wang, F. Peng, K. Liu, X.H. Dong, and J.F. Wang, Electroplastic effect in AZ31B magnesium alloy sheet through uniaxial tensile tests, Trans. Nonferrous Met. Soc. China, 25(2015), No. 8, p. 2686.

    Article  CAS  Google Scholar 

  43. Y.B. Jiang, L. Guan, G.Y. Tang, and Z.H. Zhang, Improved mechanical properties of Mg-9Al-1Zn alloy by the combination of aging, cold-rolling and electropulsing treatment, J. Alloys Compd., 626(2015), p. 297.

    Article  CAS  Google Scholar 

  44. W. Jin, J.F. Fan, H. Zhang, Y. Liu, H.B. Dong, and B.S. Xu, Microstructure, mechanical properties and static recrystallization behavior of the rolled ZK60 magnesium alloy sheets processed by electropulsing treatment, J. Alloys Compd., 646(2015), p. 1.

    Article  CAS  Google Scholar 

  45. Z.H. Shan, J. Yang, J.F. Fan, H. Zhang, Q. Zhang, Y.C. Wu, and H.B. Dong, Microstructure evolution and mechanical properties of an AZ61 alloy processed with TS-ECAP and EPT, Mater. Sci. Eng. A, 780(2020), art. No. 139195.

  46. C. Xu, Y.N. Li, and X.H. Rao, Effect of electropulsing rolling on mechanical properties and microstructure of AZ31 magnesium alloy, Trans. Nonferrous Met. Soc. China, 24(2014), No. 12, p. 3777.

    Article  CAS  Google Scholar 

  47. H.M. Liao, G.Y. Tang, Y.B. Jiang, Q. Xu, S.D. Sun, and J.N. Liu, Effect of thermo-electropulsing rolling on mechanical properties and microstructure of AZ31 magnesium alloy, Mater. Sci. Eng. A, 529(2011), p. 138.

    Article  CAS  Google Scholar 

  48. W. Long, S. Zhang, Y.L. Liang, and M.G. Ou, Influence of multi-stage heat treatment on the microstructure and mechanical properties of TC21 titanium alloy, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 296.

    Article  CAS  Google Scholar 

  49. P. Parvizian, M. Morakabati, and S. Sadeghpour, Effect of hot rolling and annealing temperatures on the microstructure and mechanical properties of SP-700 alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 374.

    Article  CAS  Google Scholar 

  50. Q. Shi, Effects of Pulse Current on Tensile Deformation Behavior of Pure Titanium [Dissertation], Northeastern University, Shenyang, 2017.

    Google Scholar 

  51. D.W. Ao, X.R. Chu, Y. Yang, S.X. Lin, and J. Gao, Effect of electropulsing treatment on microstructure and mechanical behavior of Ti-6Al-4V alloy sheet under argon gas protection, Vacuum, 148(2018), p. 230.

    Article  CAS  Google Scholar 

  52. H. Song, Z.J. Wang, and T.J. Gao, Effect of high density electropulsing treatment on formability of TC4 titanium alloy sheet, Trans. Nonferrous Met. Soc. China, 17(2007), No. 1, p. 87.

    Article  CAS  Google Scholar 

  53. L.L. Gao, J.X. Liu, X.W. Cheng, S.K. Li, Y.M. Luo, and Q.W. Guo, Effects of short time electric pulse heat treatment on microstructures and mechanical properties of hot-rolled Ti-6Al-4V alloy, Mater. Sci. Eng. A, 618(2014), p. 104.

    Article  CAS  Google Scholar 

  54. Z.Y. Zhao, G.F. Wang, Y.L. Zhang, Y.Q. Wang, and H.L. Hou, Fast recrystallization and phase transformation in ECAP deformed Ti-6Al-4V alloy induced by pulsed electric current, J. Alloys Compd., 786(2019), p. 733.

    Article  CAS  Google Scholar 

  55. D.W. Ao, J. Gao, X.R. Chu, S.X. Lin, and J. Lin, Formability and deformation mechanism of Ti-6Al-4V sheet under electropulsing assisted incremental forming, Int. J. Solids Struct., 202(2020), p. 357.

    Article  CAS  Google Scholar 

  56. H. Song and Z.J. Wang, Microcrack healing and local recrystallization in pre-deformed sheet by high density electropulsing, Mater. Sci. Eng. A, 490(2008), No. 1–2, p. 1.

    Article  Google Scholar 

  57. X.W. Ren, Z.J. Wang, X. Fang, H. Song, and J. Duan, The plastic flow model in the healing process of internal microcracks in pre-deformed TC4 sheet by pulse current, Mater. Des., 188(2020), art. No. 108428.

  58. H. Song and Z.J. Wang, Improvement of mechanical properties of cold-rolled commercially pure Ti sheet by high density electropulsing, Trans. Nonferrous Met. Soc. China, 22(2012), No. 6, p. 1350.

    Article  CAS  Google Scholar 

  59. L. Wang, X. Song, and Y. Liu, A Preparation Method of High-Strength Pure Titanium Sheet, Chinese Patent, CN201510904539.4, 2015.

  60. T. Yu, D.W. Deng, G. Wang, and H.C. Zhang, Crack healing in SUS304 stainless steel by electropulsing treatment, J. Clean. Prod., 113(2016), p. 989.

    Article  CAS  Google Scholar 

  61. Y.Z. Zhou, J.D. Guo, M. Gao, and G.H. He, Crack healing in a steel by using electropulsing technique, Mater. Lett., 58(2004), No. 11, p. 1732.

    Article  CAS  Google Scholar 

  62. A. Kumar and S.K. Paul, Healing of fatigue crack in steel with the application of pulsed electric current, Materialia, 14(2020), art. No. 100906.

  63. C. Wu, X.M. Qiu, X.F. Xu, P.L. Yin, and Y.G. Zhao, A model for rapid austenitization in steel with ferrite and pearlite microstructure under electropulsing, Materialia, 6(2019), art. No. 100343.

  64. J.T. Zhang, Z.H. Liu, J.X. Sun, H.L. Zhao, Q.Y. Shi, and D.W. Ma, Microstructure and mechanical property of electropulsing tempered ultrafine grained 42CrMo steel, Mater. Sci. Eng. A, 782(2020), art. No. 139213.

  65. A. Rahnama and R.S. Qin, The effect of electropulsing on the interlamellar spacing and mechanical properties of a hot-rolled 0.14% carbon steel, Mater. Sci. Eng. A, 627(2015), p. 145.

    Article  CAS  Google Scholar 

  66. R.A. Fard and M. Kazeminezhad, Effect of electropulsing on microstructure and hardness of cold-rolled low carbon steel, J. Mater. Res. Technol., 8(2019), No. 3, p. 3114.

    Article  CAS  Google Scholar 

  67. D. Pan, Y.G. Zhao, X.F. Xu, Y.T. Wang, W.Q. Jiang, and X.Y. Chong, A novel strengthening and toughening strategy for T250 maraging steel: Cluster-orientation governed higher strength-ductility combination induced by electropulsing, Mater. Des., 169(2019), art. No. 107686.

  68. J.J. Zhang, Z. Chen, Y.X. Wang, and B. Liu, Gibbs free energy calculation of Al-Cu-Li alloy with the effect of electric field from electron level, J. Alloys Compd., 457(2008), No. 1–2, p. 526.

    Article  CAS  Google Scholar 

  69. X.F. Xu, Y.G. Zhao, B.D. Ma, and M. Zhang, Rapid precipitation of T-phase in the 2024 aluminum alloy via cyclic electropulsing treatment, J. Alloys Compd., 610(2014), p. 506.

    Article  CAS  Google Scholar 

  70. X.F. Xu, Y.G. Zhao, X.D. Wang, Y.Y. Zhang, and Y.H. Ning, Effect of rapid solid-solution induced by electropulsing on the microstructure and mechanical properties in 7075 Al alloy, Mater. Sci. Eng. A, 654(2016), p. 278.

    Article  CAS  Google Scholar 

  71. Y. Wang, Study on Mechanism of Microstructure Evolution of GH4169 Superalloy by Electric Field Treatment [Dissertation], Shenyang, 2013.

  72. L. Wang, Y. Wang, Y. Liu, X. Song, X.D. Lü, and B.J. Zhang, Coarsening behavior of γ′ and γ″ phases in GH4169 superalloy by electric field treatment, Int. J. Miner. Metall. Mater., 20(2013), No. 9, p. 861.

    Article  CAS  Google Scholar 

  73. Y. Wang, L. Wang, Y.S. Chao, and X.D. Lü, Effect of aging temperatures with electric field on point defects in GH4169 alloy, J. Northeast. Univ. Nat. Sci., 32(2011), No. 12, p. 1733.

    CAS  Google Scholar 

  74. Y. Wang, L. Wang, J.L. Fei, Y. Liu, J.H. Du, and B.J. Zhang, Influence of electrostatic field treatment on microstructures and mechanical properties of GH4169 superalloy, Mater. Res. Innovations, 18(2014), Suppl. 4, p. S4–276.

    Google Scholar 

  75. J.L. An, L. Wang, X. Song, Y. Liu, Z.Y. Gai, and X.Z. Cao, Improving mechanism of both strength and ductility of GH4169 alloy induced by electric-pulse treatment, Mater. Sci. Eng. A, 724(2018), p. 439.

    Article  CAS  Google Scholar 

  76. Y. Liu, L. Wang, F. Feng, B.J. Zhang, and G.P. Zhao, Effects of electropulsing treatment on coarsening behavior of γ′ phase in a nikel base superalloy, J. Mater. Metall., 10(2011), No. 4, p. 288.

    CAS  Google Scholar 

  77. Y.J. Yang, J.Q. Peng, L. Wang, and Y. Wang, Effect of electric field aging on microstructure evolution of GH4169 superalloy, Mater. Rep., 30(2016), Suppl. 2, p. 516.

    Google Scholar 

  78. Y. Wang, L. Wang, Y. Liu, X. Song, B.J. Zhang, and J.H. Du, Solute atom migration in GH4169 superalloy under electrostatic fields, Int. J. Miner. Metall. Mater., 20(2013), No. 12, p. 1176.

    Article  CAS  Google Scholar 

  79. X.Y. Zhang, L. Wang, Y. Wang, Y. Liu, X.D. Lv, and Y.S. Chao, Effect of electrostatic-field treatment on the diffusion behaveors of Fe and Cr in GH4169 superalloy, J. Iron Steel Res., 23(2011), Suppl. 2, p. 146.

    Google Scholar 

  80. L. Wang, J.L. An, Y. Liu, X. Song, G.H. Xu, and G.P. Zhao, Influence of electric field treatment on precipitation behavior of δ phase in GH4169 superalloy, Acta Metall. Sin., 51(2015), No. 10, p. 1235.

    CAS  Google Scholar 

  81. J.L. An, L. Wang, Y. Liu, W.L. Cai, and X. Song, The role of δ phase for fatigue crack propagation behavior in a Ni base super-alloy at room temperature, Mater. Sci. Eng. A, 684(2017), p. 312.

    Article  CAS  Google Scholar 

  82. Y. Liu, L. Wang, X. Song, and Y. Wang, Effect of external field treatment on the microstructure and deformation behavior of nickel-base superalloy, [in] E. Gdoutos and M. Konsta-Gdoutos, eds., Proceedings of the Third International Conference on Theoretical, Applied and Experimental Mechanics, Athens, 2020, p. 70.

  83. K. Han, S.X. Qin, H.P. Li, J. Liu, Y. Wang, C.C. Zhang, P. Zhang, S. Zhang, H.B. Zhang, and H.P. Zhou, EBSD study of the effect of electropulsing treatment on the microstructure evolution in a typical cold-deformed Ni-based superalloy, Mater. Charact., 158(2019), art. No. 109936.

  84. H.B. Zhang, C.C. Zhang, B.K. Han, J.F. Qiu, H.P. Li, S.X. Qin, J. Liu, Y. Wang, P. Zhang, Y.K. Pan, and H.P. Zhou, Evolution of grain boundary character distributions in a cold-deformed nickel-based superalloy during electropulsing treatment, J. Mater. Res. Technol., 9(2020), No. 3, p. 5723.

    Article  CAS  Google Scholar 

  85. Y.B. Jiang, G.Y. Tang, C. Shek, J.X. Xie, Z.H. Xu, and Z.H. Zhang, Mechanism of electropulsing induced recrystallization in a cold-rolled Mg-9Al-1Zn alloy, J. Alloys Compd., 536(2012), p. 94.

    Article  CAS  Google Scholar 

  86. B. Gao, L. Wang, Y. Liu, Y.W. He, and T. Mo, Effects of electron pulsing current on static recrystallization behaviour of GH4049 superalloy, Mater. Sci. Technol., 22(2014), No. 5, p. 1.

    Google Scholar 

  87. Z.J. Wang and H. Song, Effect of electropulsing on anisotropy behaviour of cold-rolled commercially pure titanium sheet, Trans. Nonferrous Met. Soc. China, 19(2009), Suppl. 2, p. s409.

    Article  CAS  Google Scholar 

  88. Y. Zhou, G.Q. Chen, X.S. Fu, and W.L. Zhou, Effect of electropulsing on deformation behavior of Ti-6Al-4V alloy during cold drawing, Trans. Nonferrous Met. Soc. China, 24(2014), No. 4, p. 1012.

    Article  CAS  Google Scholar 

  89. Z.H. Shan, J. Bai, J.F. Fan, H.F. Wu, H. Zhang, Q. Zhang, Y.C. Wu, W.G. Li, H.B. Dong, and B.S. Xu, Exceptional mechanical properties of AZ31 alloy wire by combination of cold drawing and EPT, J. Mater. Sci. Technol., 51(2020), p. 111.

    Article  Google Scholar 

  90. Y.B. Jiang, L. Guan, G.Y. Tang, C. Shek, and Z.H. Zhang, Influence of electropulsing treatment on microstructure and mechanical properties of cold-rolled Mg-9Al-1Zn alloy strip, Mater. Sci. Eng. A, 528(2011), No. 16–17, p. 5627.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. U1708253 and 51571052), the Major Technology Projects of Liaoning Province, China (No. 2019JH1/10100004), and the Natural Science Foundation of Liaoning Province, China (No. 2019-S-122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Additional information

Conflict of Interest

The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Wang, L. & Liu, Y. A review of the strengthening—toughening behavior and mechanisms of advanced structural materials by multifield coupling treatment. Int J Miner Metall Mater 29, 185–199 (2022). https://doi.org/10.1007/s12613-021-2350-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2350-y

Keywords

Navigation