Skip to main content

Advertisement

Log in

Review of silicon-based alloys for lithium-ion battery anodes

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Silicon (Si) is widely considered to be the most attractive candidate anode material for use in next-generation high-energy-density lithium (Li)-ion batteries (LIBs) because it has a high theoretical gravimetric Li storage capacity, relatively low lithiation voltage, and abundant resources. Consequently, massive efforts have been exerted to improve its electrochemical performance. While some progress in this field has been achieved, a number of severe challenges, such as the element’s large volume change during cycling, low intrinsic electronic conductivity, and poor rate capacity, have yet to be solved. Methods to solve these problems have been attempted via the development of nanosized Si materials. Unfortunately, reviews summarizing the work on Si-based alloys are scarce. Herein, the recent progress related to Si-based alloy anode materials is reviewed. The problems associated with Si anodes and the corresponding strategies used to address these problems are first described. Then, the available Si-based alloys are divided into Si/Li-active and inactive systems, and the characteristics of these systems are discussed. Other special systems are also introduced. Finally, perspectives and future outlooks are provided to enable the wider application of Si-alloy anodes to commercial LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Zhang, P. Gu, J. Xu, H.G. Xue, and H. Pang, High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium-sulfur batteries, Nanoscale, 8(2016), No. 44, p. 18578.

    Article  CAS  Google Scholar 

  2. X. Gui, G.D. Hao, and W.F. Jiang, A comprehensive review of Cr, Ti-based anode materials for Li-ion batteries, Ionics, 26(2020), No. 3, p. 1081.

    Article  CAS  Google Scholar 

  3. S.A. Klankowski, R.A. Rojeski, B.A. Cruden, J.W. Liu, J. Wu, and J. Li, A high-performance lithium-ion battery anode based on the core-shell heterostructure of silicon-coated vertically aligned carbon nanofibers, J. Mater. Chem. A, 1(2013), No. 4, p. 1055.

    Article  CAS  Google Scholar 

  4. Y.Y. Xiang, J.S. Li, J.H. Lei, D. Liu, Z.Z. Xie, D.Y. Qu, K. Li, T.F. Deng, and H.L. Tang, Advanced separators for lithiumion and lithium-sulfur batteries: A review of recent progress, ChemSusChem, 9(2016), No. 21, p. 3023.

    Article  CAS  Google Scholar 

  5. L.F. Wang, M.M. Geng, X.N. Ding, C. Fang, Y. Zhang, S.S. Shi, Y. Zheng, K. Yang, C. Zhan, and X.D. Wang, Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 538.

    Article  Google Scholar 

  6. A. Iqbal, L. Chen, Y. Chen, Y.X. Gao, F. Chen, and D.C. Li, Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO-C composite anode, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1473.

    Article  CAS  Google Scholar 

  7. X.H. Shen, Z.Y. Tian, R.J. Fan, L. Shao, D.P. Zhang, G.L. Cao, L. Kou, and Y.Z. Bai, Research progress on silicon/carbon composite anode materials for lithium-ion battery, J. Energy Chem., 27(2018), No. 4, p. 1067.

    Article  Google Scholar 

  8. J. Lu, Z.W. Chen, F. Pan, Y. Cui, and K. Amine, High-performance anode materials for rechargeable lithium-ion batteries, Electrochem. Energy Rev., 1(2018), No. 1, p. 35.

    Article  CAS  Google Scholar 

  9. P. Li, G.Q. Zhao, X.B. Zheng, X. Xu, C.H. Yao, W.P. Sun, and S.X. Dou, Recent progress on silicon-based anode materials for practical lithium-ion battery applications, Energy Storage Mater., 15(2018), p. 422.

    Article  Google Scholar 

  10. M.N. Obrovac and V.L. Chevrier, Alloy negative electrodes for Li-ion batteries, Chem. Rev., 114(2014), No. 23, p. 11444.

    Article  CAS  Google Scholar 

  11. C.M. Park, J.H. Kim, H. Kim, and H.J. Sohn, Li-alloy based anode materials for Li secondary batteries, Chem. Soc. Rev., 39(2010), No. 8, p. 3115.

    Article  CAS  Google Scholar 

  12. M.D. Bhatt and J.Y. Lee, High capacity conversion anodes in Li-ion batteries: A review, Int. J. Hydrogen Energy, 44(2019), No. 21, p. 10852.

    Article  CAS  Google Scholar 

  13. R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, A review of advanced and practical lithium battery materials, J. Mater. Chem., 21(2011), No. 27, art. No. 9938.

  14. D.L. Ma, Z.Y. Cao, and A.M. Hu, Si-based anode materials for Li-ion batteries: A mini review, Nano Micro Lett., 6(2014), No. 4, p. 347.

    Article  CAS  Google Scholar 

  15. B.H. Park, J.H. Jeong, G.W. Lee, Y.H. Kim, K.C. Roh, and K.B. Kim, Highly conductive carbon nanotube micro-spherical network for high-rate silicon anode, J. Power Sources, 394(2018), p. 94.

    Article  CAS  Google Scholar 

  16. Z. Yan and J.C. Guo, High-performance silicon-carbon anode material via aerosol spray drying and magnesiothermic reduction, Nano Energy, 63(2019), art. No. 103845.

  17. L.L. Ma, D.S. Guan, F.F. Wang, and C. Yuan, Environmental emissions from chemical etching synthesis of silicon nanotube for lithium ion battery applications, J. Manuf. Mater. Process., 2(2018), No. 1, art. No. 11.

  18. D.T. Ngo, H.T.T. Le, X.M. Pham, C.N. Park, and C.J. Park, Facile synthesis of Si@SiC composite as an anode material for lithium-ion batteries, ACS Appl. Mater. Interfaces, 9(2017), No. 38, p. 32790.

    Article  CAS  Google Scholar 

  19. S.S. Zhu, J.B. Zhou, Y. Guan, W.L. Cai, Y.Y. Zhao, Y.C. Zhu, L.Q. Zhu, Y.C. Zhu, and Y.T. Qian, Hierarchical graphene-scaffolded silicon/graphite composites as high performance anodes for lithium-ion batteries, Small, 14(2018), No. 47, art. No. 1802457.

  20. F.H. Du, K.X. Wang, and J.S. Chen, Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials, J. Mater. Chem. A, 4(2016), No. 1, p. 32.

    Article  CAS  Google Scholar 

  21. U. Kasavajjula, C.S. Wang, and A.J. Appleby, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells, J. Power Sources, 163(2007), No. 2, p. 1003.

    Article  CAS  Google Scholar 

  22. M.A. Rahman, G.S. Song, A.I. Bhatt, Y.C. Wong, and C.E. Wen, Nanostructured silicon anodes for high-performance lithium-ion batteries, Adv. Funct. Mater., 26(2016), No. 5, p. 647.

    Article  CAS  Google Scholar 

  23. L. Sun, J. Xie, and Z. Jin, Different dimensional nanostructured silicon materials: From synthesis methodology to application in high-energy lithium-ion batteries, Energy Technol., 7(2019), No. 11, art. No. 1900962.

  24. X.Y. Zhu, D.J. Yang, J.J. Li, and F.B. Su, Nanostructured Si-based anodes for lithium-ion batteries, J. Nanosci. Nanotechnol., 15(2015), No. 1, p. 15.

    Article  CAS  Google Scholar 

  25. M. Ashuri, Q.R. He, and L.L. Shaw, Silicon as a potential anode material for Li-ion batteries: Where size, geometry and structure matter, Nanoscale, 8(2016), No. 1, p. 74.

    Article  CAS  Google Scholar 

  26. J.T. Wang, J.Y. Yang, and S.G. Lu, A mini review: Nanostructured silicon-based materials for lithium ion battery, Nanosci. Nanotechnol. — Asia, 6(2016), No. 1, p. 3.

    Article  CAS  Google Scholar 

  27. J. Li and J.R. Dahn, An in situ X-ray diffraction study of the reaction of Li with crystalline Si, J. Electrochem. Soc., 154(2007), No. 3, art. No. A156.

  28. T.D. Hatchard and J.R. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon, J. Electrochem. Soc., 151(2004), No. 6, art. No. A838.

  29. M.N. Obrovac and L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction, Electrochem. Solid-State Lett., 7(2004), No. 5, art. No. A93.

  30. M. Shimizu, H. Usui, T. Suzumura, and H. Sakaguchi, Analysis of the deterioration mechanism of Si electrode as a Li-ion battery anode using Raman microspectroscopy, J. Phys. Chem. C, 119(2015), No. 6, p. 2975.

    Article  CAS  Google Scholar 

  31. H. Wu and Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, 7(2012), No. 5, p. 414.

    Article  CAS  Google Scholar 

  32. W.J. Zhang, Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries, J. Power Sources, 196(2011), No. 3, p. 877.

    Article  CAS  Google Scholar 

  33. A. Anani and R.A. Huggins, Multinary alloy electrodes for solid state batteries I. A phase diagram approach for the selection and storage properties determination of candidate electrode materials, J. Power Sources, 38(1992), No. 3, p. 351.

    Article  CAS  Google Scholar 

  34. Y.X. Liu, W. Sun, X.X. Lan, R.Z. Hu, J. Cui, J. Liu, J.W. Liu, Y. Zhang, and M. Zhu, Adding metal carbides to suppress the crystalline Li15Si4 formation: A route toward cycling durable Si-based anodes for lithium-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 42, p. 38727.

    Article  CAS  Google Scholar 

  35. J. Yang, Y.H. Lin, B.S. Guo, M.S. Wang, J.C. Chen, Z.Y. Ma, Y. Huang, and X. Li, Enhanced electrochemical performance of Si/C electrode through surface modification using SrF2 particle, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1621.

    Google Scholar 

  36. Q.K. Du, Q.X. Wu, H.X. Wang, X.J. Meng, Z.K. Ji, S. Zhao, W.W. Zhu, C. Liu, M. Ling, and C.D. Ling, Metallurgy, Carbon dot-modified silicon nanoparticles for lithium ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1603.

    Google Scholar 

  37. K.M. Lee, Y.S. Lee, Y.W. Kim, Y.K. Sun, and S.M. Lee, Electrochemical characterization of Ti-Si and Ti-Si-Al alloy anodes for Li-ion batteries produced by mechanical ball milling, J. Alloys Compd., 472(2009), No. 1–2, p. 461.

    Article  CAS  Google Scholar 

  38. I.S. Kim, P.N. Kumta, and G.E. Blomgren, Si/TiN nanocomposites novel anode materials for Li-ion batteries, Electrochem. Solid-State Lett., 3(1999), No. 11, art. No. 493.

  39. M.R. Jo, Y.U. Heo, Y.C. Lee, and Y.M. Kang, A nano-Si/FeSi2Ti hetero-structure with structural stability for highly reversible lithium storage, Nanoscale, 6(2014), No. 2, p. 1005.

    Article  CAS  Google Scholar 

  40. L.W. Ji and X.W. Zhang, Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes, Electrochem. Commun., 11(2009), No. 6, p. 1146.

    Article  CAS  Google Scholar 

  41. S.Q. Chen, P.T. Bao, X.D. Huang, B. Sun, and G.X. Wang, Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance, Nano Res., 7(2014), No. 1, p. 85.

    Article  CAS  Google Scholar 

  42. Y.J. Qiao, H. Zhang, Y.X. Hu, W.P. Li, W.J. Liu, H.M. Shang, M.Z. Qu, G.C. Peng, and Z.W. Xie, A chain-like compound of Si@CNTs nanostructure and MOF-derived porous carbon as anode for Li-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1611.

    Google Scholar 

  43. S.R. Gowda, V. Pushparaj, S. Herle, G. Girishkumar, J.G. Gordon, H. Gullapalli, X.B. Zhan, P.M. Ajayan, and A.L.M. Reddy, Three-dimensionally engineered porous silicon electrodes for Li ion batteries, Nano Lett., 12(2012), No. 12, p. 6060.

    Article  CAS  Google Scholar 

  44. M. Gauthier, D. Mazouzi, D. Reyter, B. Lestriez, P. Moreau, D. Guyomard, and L. Roué, A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries, Energy Environ. Sci., 6(2013), No. 7, art. No. 2145.

  45. L.F. Guo, S.Y. Zhang, J. Xie, D. Zhen, Y. Jin, K.Y. Wan, D.G. Zhuang, W.Q. Zheng, and X.B. Zhao, Controlled synthesis of nanosized Si by magnesiothermic reduction from diatomite as anode material for Li-ion batteries, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 515.

    Article  CAS  Google Scholar 

  46. T. Li, J.Y. Yang, and S.G. Lu, Effect of modified elastomeric binders on the electrochemical properties of silicon anodes for lithium-ion batteries, Int. J. Miner. Metall. Mater., 19(2012), No. 8, p. 752.

    Article  CAS  Google Scholar 

  47. X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, and J.Y. Huang, Size-dependent fracture of silicon nanoparticles during lithiation, ACS Nano, 6(2012), No. 2, p. 1522.

    Article  CAS  Google Scholar 

  48. I. Ryu, J.W. Choi, Y. Cui, and W.D. Nix, Size-dependent fracture of Si nanowire battery anodes, J. Mech. Phys. Solids, 59(2011), No. 9, p. 1717.

    Article  CAS  Google Scholar 

  49. C. Wang, J.C. Wen, F. Luo, B.G. Quan, H. Li, Y.J. Wei, C.Z. Gu, and J.J. Li, Anisotropic expansion and size-dependent fracture of silicon nanotubes during lithiation, J. Mater. Chem. A, 7(2019), No. 25, p. 15113.

    Article  CAS  Google Scholar 

  50. Y. Chen, S. Zeng, J.F. Qian, Y.D. Wang, Y.L. Cao, H.X. Yang, and X.P. Ai, Li+-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries, ACS Appl. Mater. Interfaces, 6(2014), No. 5, p. 3508.

    Article  CAS  Google Scholar 

  51. W.J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources, 196(2011), No. 1, p. 13.

    Article  CAS  Google Scholar 

  52. J. Wolfenstine, CaSi2 as an anode for lithium-ion batteries, J. Power Sources, 124(2003), No. 1, p. 241.

    Article  CAS  Google Scholar 

  53. H. Kim, J. Choi, H.J. Sohn, and T. Kang, The insertion mechanism of lithium into Mg2Si anode material for Li-ion batteries, J. Electrochem. Soc., 146(1999), No. 12, p. 4401.

    Article  CAS  Google Scholar 

  54. T. Moriga, K. Watanabe, D. Tsuji, S. Massaki, and I. Nakabayashi, Reaction mechanism of metal silicide Mg2Si for Li insertion, J. Solid State Chem., 153(2000), No. 2, p. 386.

    Article  CAS  Google Scholar 

  55. G.A. Roberts, E.J. Cairns, and J.A. Reimer, Magnesium silicide as a negative electrode material for lithium-ion batteries, J. Power Sources, 110(2002), No. 2, p. 424.

    Article  CAS  Google Scholar 

  56. C.S. Fuller and J.C. Severiens, Mobility of impurity ions in germanium and silicon, Phys. Rev., 96(1954), No. 1, p. 21.

    Article  CAS  Google Scholar 

  57. H. Kim, Y. Son, C. Park, M.J. Lee, M.S. Hong, J. Kim, M. Lee, J. Cho, and H.C. Choi, Germanium silicon alloy anode material capable of tunable overpotential by nanoscale Si segregation, Nano Lett., 15(2015), No. 6, p. 4135.

    Article  CAS  Google Scholar 

  58. Y.H. Yang, S. Liu, X.F. Bian, J.K. Feng, Y.L. An, and C. Yuan, Morphology- and porosity-tunable synthesis of 3D nanoporous SiGe alloy as a high-performance lithium-ion battery anode, ACS Nano, 12(2018), No. 3, p. 2900.

    Article  CAS  Google Scholar 

  59. N. Bensalah, M. Matalkeh, N.K. Mustafa, and H. Merabet, Binary Si-Ge alloys as high-capacity anodes for Li-ion batteries, Phys. Status Solidi A, 217(2020), No. 1, art. No. 1900414.

  60. D. Duveau, B. Fraisse, F. Cunin, and L. Monconduit, Synergistic effects of Ge and Si on the performances and mechanism of the GexSi1−x electrodes for Li ion batteries, Chem. Mater., 27(2015), No. 9, p. 3226.

    Article  CAS  Google Scholar 

  61. P.R. Abel, A.M. Chockla, Y.M. Lin, V.C. Holmberg, J.T. Harris, B.A. Korgel, A. Heller, and C.B. Mullins, Nanostructured Si(1−x)Gex for tunable thin film lithium-ion battery anodes, ACS Nano, 7(2013), No. 3, p. 2249.

    Article  CAS  Google Scholar 

  62. K. Stokes, G. Flynn, H. Geaney, G. Bree, and K.M. Ryan, Axial Si-Ge heterostructure nanowires as lithium-ion battery anodes, Nano Lett., 18(2018), No. 9, p. 5569.

    Article  CAS  Google Scholar 

  63. J. Ahn, B. Kim, G. Jang, and J. Moon, Magnesiothermic reduction-enabled synthesis of Si-Ge alloy nanoparticles with a canyon-like surface structure for Li-ion battery, ChemElectroChem, 5(2018), No. 19, p. 2729.

    Article  CAS  Google Scholar 

  64. A. Varzi, L. Mattarozzi, S. Cattarin, P. Guerriero, and S. Passerini, Batteries: 3D porous Cu-Zn alloys as alternative anode materials for Li-ion batteries with superior low T performance, Adv. Energy Mater., 8(2018), No. 1, art. No. 1870001.

  65. Z.Z. Chen, X.R. Wang, T.Z. Jian, J.G. Hou, J.H. Zhou, and C.X. Xu, One-step mild fabrication of branch-like multimodal porous Si/Zn composites as high performance anodes for Li-ion batteries, Solid State Ionics, 354(2020), art. No. 115406.

  66. S. Saager, B. Scheffel, O. Zywitzki, T. Modes, M. Piwko, S. Doerfler, H. Althues, and C. Metzner, Porous silicon thin films as anodes for lithium ion batteries deposited by co-evaporation of silicon and zinc, Surf. Coat. Technol., 358(2019), p. 586.

    Article  CAS  Google Scholar 

  67. R. Alcántara, M. Tillard-Charbonnel, L. Spina, C. Belin, and J.L. Tirado, Electrochemical reactions of lithium with Li2ZnGe and Li2ZnSi, Electrochimica Acta, 47(2002), No. 7, p. 1115.

    Article  Google Scholar 

  68. W.W. Li, X.W. Li, J. Liao, B.T. Zhao, L. Zhang, L. Huang, G.P. Liu, Z.P. Guo, and M.L. Liu, A new family of cation-disordered Zn(Cu)-Si-P compounds as high-performance anodes for next-generation Li-ion batteries, Energy Environ. Sci., 12(2019), No. 7, p. 2286.

    Article  CAS  Google Scholar 

  69. W.W. Li, J. Liao, X.W. Li, L. Zhang, B.T. Zhao, Y. Chen, Y.C. Zhou, Z.P. Guo, and M.L. Liu, Zn(Cu)Si2+xP3 solid solution anodes for high-performance Li-ion batteries with tunable working potentials, Adv. Funct. Mater., 29(2019), No. 34, art. No. 1903638.

  70. J.P. Maranchi, A.F. Hepp, A.G. Evans, N.T. Nuhfer, and P.N. Kumta, Interfacial properties of the a-SiCu: Active-inactive thin-film anode system for lithium-ion batteries, J. Electrochem. Soc., 153(2006), No. 6, art. No. A1246.

  71. G.X. Wang, L. Sun, D.H. Bradhurst, S. Zhong, S.X. Dou, and H.K. Liu, Innovative nanosize lithium storage alloys with silica as active centre, J. Power Sources, 88(2000), No. 2, p. 278.

    Article  CAS  Google Scholar 

  72. Y. Chen, J.F. Qian, Y.L. Cao, H.X. Yang, and X.P. Ai, Green synthesis and stable Li-storage performance of FeSi2/Si@C nanocomposite for lithium-ion batteries, ACS Appl. Mater. Interfaces, 4(2012), No. 7, p. 3753.

    Article  CAS  Google Scholar 

  73. X.Y. Wang, Z.Y. Wen, Y. Liu, L.Z. Huang, and M.F. Wu, Study on Si-Ti alloy dispersed in a glassy matrix as an anode material for lithium-ion batteries, J. Alloys Compd., 506(2010), No. 1, p. 317.

    Article  CAS  Google Scholar 

  74. M.D. Fleischauer, J.M. Topple, and J.R. Dahn, Combinatorial investigations of Si-M (M = Cr + Ni, Fe, Mn) thin film negative electrode materials, Electrochem. Solid-State Lett., 8(2005), No. 2, art. No. A137.

  75. H.T. Kwon, A.R. Park, S.S. Lee, H. Cho, H. Jung, and C.M. Park, Nanostructured Si-FeSi2-graphite-C composite: An optimized and practical solution for Si-based anodes for superior Li-ion batteries, J. Electrochem. Soc., 166(2019), No. 10, p. A2221.

    Article  CAS  Google Scholar 

  76. S. Yoon, S.I. Lee, H. Kim, and H.J. Sohn, Enhancement of capacity of carbon-coated Si-Cu3Si composite anode using metal-organic compound for lithium-ion batteries, J. Power Sources, 161(2006), No. 2, p. 1319.

    Article  CAS  Google Scholar 

  77. L. Deng, Z.Y. Wu, Z.W. Yin, Y.Q. Lu, Z.G. Huang, J.H. You, J.T. Li, L. Huang, and S.G. Sun, High-performance SiMn/C composite anodes with integrating inactive Mn4Si7 alloy for lithium-ion batteries, Electrochim. Acta, 260(2018), p. 830.

    Article  CAS  Google Scholar 

  78. Y. Domi, H. Usui, R. Takaishi, and H. Sakaguchi, Lithiation and delithiation reactions of binary silicide electrodes in an ionic liquid electrolyte as novel anodes for lithium-ion batteries, ChemElectroChem, 6(2019), No. 2, p. 581.

    Article  CAS  Google Scholar 

  79. C.H. Doh, N. Kalaiselvi, C.W. Park, B.S. Jin, S.I. Moon, and M.S. Yun, Synthesis and electrochemical characterization of novel high capacity Si3−xFexN4 anode for rechargeable lithium batteries, Electrochem. Commun., 6(2004), No. 10, p. 965.

    Article  CAS  Google Scholar 

  80. M.X. Gao, D.S. Wang, X.Q. Zhang, H.G. Pan, Y.F. Liu, C. Liang, C.X. Shang, and Z.X. Guo, A hybrid Si@FeSiy/SiOx anode structure for high performance lithium-ion batteries via ammonia-assisted one-pot synthesis, J. Mater. Chem. A, 3(2015), No. 20, p. 10767.

    Article  CAS  Google Scholar 

  81. T. Li, Y.L. Cao, X.P. Ai, and H.X. Yang, Cycleable graphite/FeSi6 alloy composite as a high capacity anode material for Li-ion batteries, J. Power Sources, 184(2008), No. 2, p. 473.

    Article  CAS  Google Scholar 

  82. M. Ruttert, V. Siozios, M. Winter, and T. Placke, Mechanochemical synthesis of Fe-Si-based anode materials for high-energy lithium ion full-cells, ACS Appl. Energy Mater., 3(2020), No. 1, p. 743.

    Article  CAS  Google Scholar 

  83. Z.J. Du, S.N. Ellis, R.A. Dunlap, and M.N. Obrovac, NixSi1−x alloys prepared by mechanical milling as negative electrode materials for lithium ion batteries, J. Electrochem. Soc., 163(2015), No. 2, p. A13.

    Article  CAS  Google Scholar 

  84. M. Ruttert, V. Siozios, M. Winter, and T. Placke, Synthesis and comparative investigation of silicon transition metal silicide composite anodes for lithium ion batteries, Z. Anorg. Allg. Chem., 645(2019), No. 3, p. 248.

    Article  CAS  Google Scholar 

  85. P.X. Zhang, L. Huang, Y.L. Li, X.Z. Ren, L.B. Deng, and Q.H. Yuan, Si/Ni3Si-encapulated carbon nanofiber composites as three-dimensional network structured anodes for lithium-ion batteries, Electrochim. Acta, 192(2016), p. 385.

    Article  CAS  Google Scholar 

  86. H.P. Jia, C. Stock, R. Kloepsch, X. He, J.P. Badillo, O. Fromm, B. Vortmann, M. Winter, and T. Placke, Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries, ACS Appl. Mater. Interfaces, 7(2015), No. 3, p. 1508.

    Article  CAS  Google Scholar 

  87. M. Chen, Q.S. Jing, H.B. Sun, J.Q. Xu, Z.Y. Yuan, J.T. Ren, A.X. Ding, Z.Y. Huang, and M.Y. Dong, Engineering the core-shell-structured NCNTs-Ni2Si@porous Si composite with robust Ni-Si interfacial bonding for high-performance Li-ion batteries, Langmuir, 35(2019), No. 19, p. 6321.

    Article  CAS  Google Scholar 

  88. N. Umirov, D.H. Seo, T. Kim, H.Y. Kim, and S.S. Kim, Microstructure and electrochemical properties of rapidly solidified Si-Ni alloys as anode for lithium-ion batteries, J. Ind. Eng. Chem., 71(2019), p. 351.

    Article  CAS  Google Scholar 

  89. X. Han, H.X. Chen, X. Li, S.M. Lai, Y.H. Xu, C. Li, S.Y. Chen, and Y. Yang, NiSix/a-Si nanowires with interfacial a-Ge as anodes for high-rate lithium-ion batteries, ACS Appl. Mater. Interfaces, 8(2016), No. 1, p. 673.

    Article  CAS  Google Scholar 

  90. Q.R. Liu, Y. Gao, P.G. He, C. Yan, Y. Gao, J.Z. Gao, H.B. Lu, and Z.B. Yang, Facile fabrication of hollow structured Si-Ni-C nanofabric anode for Li-ion battery, Mater. Lett., 231(2018), p. 205.

    Article  CAS  Google Scholar 

  91. Y. Zhou, M.R. Su, A.C. Dou, and Y.J. Liu, Facile synthesis of Si/NiSi2/C composite derived from metal-organic frameworks for high-performance lithium-ion battery anode, J. Electroanal. Chem., 873(2020), art. No. 114398.

  92. Y.K. Wang, S.M. Cao, M. Kalinina, L.T. Zheng, L.J. Li, M. Zhu, and M.N. Obrovac, Lithium insertion in nanostructured Si1−xTix alloys, J. Electrochem. Soc., 164(2017), No. 13, p. A3006.

    Article  CAS  Google Scholar 

  93. S. Zhou, X.H. Liu, and D.W. Wang, Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries, Nano Lett., 10(2010), No. 3, p. 860.

    Article  CAS  Google Scholar 

  94. Z.H. Yan, M. Oehring, and R. Bormann, Metastable phase formation in mechanically alloyed and ball milled Ti-Si, J. Appl. Phys., 72(1992), No. 6, p. 2478.

    Article  CAS  Google Scholar 

  95. Z. Dong, H.T. Gu, W.B. Du, Z.H. Feng, C.Y. Zhang, Y.Z. Jiang, T.J. Zhu, G.R. Chen, J. Chen, Y.F. Liu, M.X. Gao, and H.G. Pan, Si/Ti3SiC2 composite anode with enhanced elastic modulus and high electronic conductivity for lithium-ion batteries, J. Power Sources, 431(2019), p. 55.

    Article  CAS  Google Scholar 

  96. H.I. Park, M. Sohn, J.H. Choi, C. Park, J.H. Kim, and H. Kim, Microstructural tuning of Si/TiFeSi2 nanocomposite as lithium storage materials by mechanical deformation, Electrochim. Acta, 210(2016), p. 301.

    Article  CAS  Google Scholar 

  97. Y.N. NuLi, B.F. Wang, J. Yang, X.X. Yuan, and Z.F. Ma, Cu5Si-Si/C composites for lithium-ion battery anodes, J. Power Sources, 153(2006), No. 2, p. 371.

    Article  CAS  Google Scholar 

  98. W.Q. Ma, X.Z. Liu, X. Wang, Z.F. Wang, R.E. Zhang, Z.H. Yuan, and Y. Ding, Crystalline Cu-silicide stabilizes the performance of a high capacity Si-based Li-ion battery anode, J. Mater. Chem. A, 4(2016), No. 48, p. 19140.

    Article  CAS  Google Scholar 

  99. G.L. Lu, F.H. Liu, X. Chen, and J.F. Yang, Cu nanowire wrapped and Cu3Si anchored Si@Cu quasi core-shell composite microsized particles as anode materials for Li-ion batteries, J. Alloys Compd., 809(2019), art. No. 151750.

  100. Z.M. Zheng, H.H. Wu, H.X. Chen, Y. Cheng, Q.B. Zhang, Q.S. Xie, L.S. Wang, K.L. Zhang, M.S. Wang, D.L. Peng, and X.C. Zeng, Fabrication and understanding of Cu3Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries, Nanoscale, 10(2018), No. 47, p. 22203.

    Article  CAS  Google Scholar 

  101. S.C. Hou, T.Y. Chen, Y.H. Wu, H.Y. Chen, X.D. Lin, Y.Q. Chen, J.L. Huang, and C.C. Chang, Mechanochemical synthesis of Si/Cu3Si-based composite as negative electrode materials for lithium ion battery, Sci. Rep., 8(2018), art. No. 12695.

  102. W.F. Ren, J.T. Li, S.J. Zhang, A.L. Lin, Y.H. Chen, Z.G. Gao, Y. Zhou, L. Deng, L. Huang, and S.G. Sun, Fabrication of multi-shell coated silicon nanoparticles via in situ electroless deposition as high performance anodes for lithium ion batteries, J. Energy Chem., 48(2020), p. 160.

    Article  Google Scholar 

  103. S.S. Lee, K.H. Nam, H. Jung, and C.M. Park, Si-based composite interconnected by multiple matrices for high-performance Li-ion battery anodes, Chem. Eng. J., 381(2020), art. No. 122619.

  104. I.S. Aminu, H. Geaney, S. Imtiaz, T.E. Adegoke, N. Kapuria, G.A. Collins, and K.M. Ryan, A copper silicide nanofoam current collector for directly grown Si nanowire networks and their application as lithium-ion anodes, Adv. Funct. Mater., 30(2020), No. 38, art. No. 2003278.

  105. J.Y. Woo, A.Y. Kim, M.K. Kim, S.H. Lee, Y.K. Sun, G.C. Liu, and J.K. Lee, Cu3Si-doped porous-silicon particles prepared by simplified chemical vapor deposition method as anode material for high-rate and long-cycle lithium-ion batteries, J. Alloys Compd., 701(2017), p. 425.

    Article  CAS  Google Scholar 

  106. H. Zhang, H. Xu, X.F. Lou, H. Jin, P. Zong, S.W. Li, Y. Bai, and F. Ma, Micro-structured Si@Cu3Si@C ternary composite anodes for high-performance Li-ion batteries, Ionics, 25(2019), No. 10, p. 4667.

    Article  CAS  Google Scholar 

  107. K. Stokes, H. Geaney, M. Sheehan, D. Borsa, and K.M. Ryan, Copper silicide nanowires as hosts for amorphous Si deposition as a route to produce high capacity lithium-ion battery anodes, Nano Lett., 19(2019), No. 12, p. 8829.

    Article  CAS  Google Scholar 

  108. J.F. Guo, S.E. Pei, Z.S. He, L.A. Huang, T.Z. Lu, J.J. Gong, H.B. Shao, and J.M. Wang, Novel porous Si-Cu3Si-Cu micro-sphere composites with excellent electrochemical lithium storage, Electrochim. Acta, 348(2020), art. No. 136334.

  109. S.B. Son, S.C. Kim, C.S. Kang, T.A. Yersak, Y.C. Kim, C.G. Lee, S.H. Moon, J.S. Cho, J.T. Moon, K.H. Oh, and S.H. Lee, A highly reversible nano-Si anode enabled by mechanical confinement in an electrochemically activated LixTi4Ni4Si7 matrix, Adv. Energy Mater., 2(2012), No. 10, p. 1226.

    Article  CAS  Google Scholar 

  110. K.J. Lee, S.H. Yu, J.J. Kim, D.H. Lee, J. Park, S.S. Suh, J.S. Cho, and Y.E. Sung, Si7Ti4Ni4 as a buffer material for Si and its electrochemical study for lithium ion batteries, J. Power Sources, 246(2014), p. 729.

    Article  CAS  Google Scholar 

  111. X.M. Li, F.E. Kersey-Bronec, J. Ke, J.E. Cloud, Y.L. Wang, C. Ngo, S. Pylypenko, and Y.G. Yang, Study of lithium silicide nanoparticles as anode materials for advanced lithium ion batteries, ACS Appl. Mater. Interfaces, 9(2017), No. 19, p. 16071.

    Article  CAS  Google Scholar 

  112. J.E. Cloud, Y.L. Wang, X.M. Li, T.S. Yoder, Y. Yang, and Y.A. Yang, Lithium silicide nanocrystals: Synthesis, chemical stability, thermal stability, and carbon encapsulation, Inorg. Chem., 53(2014), No. 20, p. 11289.

    Article  CAS  Google Scholar 

  113. H.W. Park, J.H. Song, H. Choi, J.S. Jin, and H.T. Lim, Anode performance of lithium-silicon alloy prepared by mechanical alloying for use in all-solid-state lithium secondary batteries, Jpn. J. Appl. Phys., 53(2014), No. 8S3, art. No. 08NK02.

  114. C. Wang, Y.Y. Han, S.H. Li, T. Chen, J.M. Yu, and Z.D. Lu, Thermal lithiated-TiO2: A robust and electron-conducting protection layer for Li-Si alloy anode, ACS Appl. Mater. Interfaces, 10(2018), No. 15, p. 12750.

    Article  CAS  Google Scholar 

  115. C. Wang, J.M. Yu, S.H. Li, and Z.D. Lu, Boosting the cycling stability of LixSi alloy microparticles through electroless copper deposition, Chem. Eng. J., 370(2019), p. 1019.

    Article  CAS  Google Scholar 

  116. Z.P. Guo, Z.W. Zhao, H.K. Liu, and S.X. Dou, Lithium insertion in Si-TiC nanocomposite materials produced by high-energy mechanical milling, J. Power Sources, 146(2005), No. 1–2, p. 190.

    Article  CAS  Google Scholar 

  117. I.S. Kim, G.E. Blomgren, and P.N. Kumta, Nanostructured Si/TiB2 composite anodes for Li-ion batteries, Electrochem. Solid-State Lett., 6(2003), No. 8, art. No. A157.

  118. G.Q. Wang, Z.S. Wen, Y.-E. Yang, J.P. Yin, W.Q. Kong, S. Li, J.C. Sun, and S.J. Ji, Ultra-long life Si@rGO/g-C3N4 with a multiply synergetic effect as an anode material for lithiumion batteries, J. Mater. Chem. A., 6(2018), No. 17, p. 7557.

    Article  CAS  Google Scholar 

  119. C. Loka, H. Yu, K.S. Lee, and J. Cho, Nanocomposite Si/(NiTi) anode materials synthesized by high-energy mechanical milling for lithium-ion rechargeable batteries, J. Power Sources, 244(2013), p. 259.

    Article  CAS  Google Scholar 

  120. Y. Wang, S.M. Cao, H. Liu, M. Zhu, and M.N. Obrovac, Si-TiN alloy Li-ion battery negative electrode materials made by N2 gas milling, MRS Commun., 8(2018), No. 3, p. 1352.

    Article  CAS  Google Scholar 

  121. Y.D. Cao, B. Scott, R.A. Dunlap, J. Wang, and M.N. Obrovac, An investigation of the Fe-Mn-Si system for Li-ion battery negative electrodes, J. Electrochem. Soc., 166(2019), No. 2, p. A21.

    Article  CAS  Google Scholar 

  122. S. Chae, M. Ko, S. Park, N. Kim, J. Ma, and J. Cho, Micronsized Fe-Cu-Si ternary composite anodes for high energy Li-ion batteries, Energy Environ. Sci., 9(2016), No. 4, p. 1251.

    Article  CAS  Google Scholar 

  123. L. MacEachern, R.A. Dunlap, and M.N. Obrovac, Mechanically milled Fe-Si-Zn alloys as negative electrodes for Li-ion batteries, J. Electrochem. Soc., 162(2015), No. 12, p. A2319.

    Article  CAS  Google Scholar 

  124. N. Umirov, D.H. Seo, H.Y. Kim, and S.S. Kim, Pragmatic approach to design silicon alloy anode by the equilibrium method, ACS Appl. Mater. Interfaces, 12(2020), No. 15, p. 17406.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52074360), the Natural Science Foundation for Distinguished Young Scholars of Hunan Province (No. 2020JJ2047), the Program of Huxiang Young Talents (No. 2019RS2002), and the Innovation-Driven Project of Central South University (No. 2020CX027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-hai Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Zy., Peng, Wj., Wang, Zx. et al. Review of silicon-based alloys for lithium-ion battery anodes. Int J Miner Metall Mater 28, 1549–1564 (2021). https://doi.org/10.1007/s12613-021-2335-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2335-x

Keywords

Navigation