Skip to main content
Log in

Adsorption properties of V(IV) on resin-activated carbon composite electrodes in capacitive deionization

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Composite electrodes prepared by cation exchange resins and activated carbon (AC) were used to adsorb V(IV) in capacitive deionization (CDI). The electrode made of middle resin size (D860/AC M) had the largest specific surface area and mesoporous content than two other composite electrodes. Electrochemical analysis showed that D860/AC M presents higher specific capacitance and electrical double layer capacitor than the others, and significantly lower internal diffusion impedance. Thus, D860/AC M exhibits the highest adsorption capacity and rate of V(IV) among three electrodes. The intra-particle diffusion model fits well in the initial adsorption stage, while the liquid film diffusion model is more suitable for fitting at the later stage. The pseudo-second-order kinetic model is suited for the entire adsorption process. The adsorption of V(IV) on the composite electrode follows that of the Freundlich isotherm. Thermodynamic analysis indicates that the adsorption of V(IV) is an exothermic process with entropy reduction, and the electric field force plays a dominant role in the CDI process. This work aims to improve our understanding of the ion adsorption behaviors and mechanisms on the composite electrodes in CDI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.T. Li, C. Wei, G. Fan, H.L. Wu, C.X. Li, and X.B. Li, Acid leaching of black shale for the extraction of vanadium, Int. J. Miner. Process., 95(2010, No. 1-4, p 62.

    Article  CAS  Google Scholar 

  2. Y.M. Zhang, S.X. Bao, T. Liu, T.J. Chen, and J. Huang, The technology of extracting vanadium from stone coal in China: History, current status and future prospects, Hydrometallurgy, 109(2011), No. 1-2, p. 116.

    CAS  Google Scholar 

  3. B. Chen, S.X. Bao, Y.M. Zhang, and S. Li, A high-efficiency and sustainable leaching process of vanadium from shale in sulfuric acid systems enhanced by ultrasound, Sep. Purif. Technol., 240(2020), art. No. 116624.

    Article  CAS  Google Scholar 

  4. B. Chen, S.X. Bao, and Y.M. Zhang, Column separation of vanadium( v) from complex sulfuric solution using trialkylamine-impregnated resins, JOM, 72(2020, No. 2, p. 953.

    Article  CAS  Google Scholar 

  5. R. Navarro, J. Guzman, I. Saucedo, J. Revilla, and E. Guibal, Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes, Waste Manag., 27(2006, No. 3, p. 425.

    Google Scholar 

  6. Y.P. Luo, S.X. Bao, and Y.M. Zhang, Preparation of one-part geopolymeric precursors using vanadium tailing by thermal activation, J. Am. Ceramic. Soc., 103(2020, No. 2, p. 779.

    Article  CAS  Google Scholar 

  7. B. Chen, S.X. Bao, and Y.M. Zhang, Synergetic strengthening mechanism of ultrasound combined with calcium fluoride towards vanadium extraction from low-grade vanadium-bearing shale, Int. J. Min. Sci. Technol. (2021). DOI: https://doi.org/10.1016/j.ijmst.2021.07.008

    Google Scholar 

  8. W. Li, Y.M. Zhang, T. Liu, J. Huang, and Y. Wang, Effect of impurities on vanadium purification from acid leaching solution of stone coal with solvent extraction process, Nonferrous Met. Extr. Metall., 2013, No. 5, p. 27.

    Google Scholar 

  9. L. Liang, S.X. Bao, Y.M. Zhang, and Y.P. Tang, Separation and recovery of V(IV) from sulfuric acid solutions containing Fe(III) and Al(III) using bis(2-ethylhexyl)phosphoric acid impregnated resin, Chem. Eng. Res. Des., 111(2016), p. 109.

    Article  CAS  Google Scholar 

  10. Y.P. Tang, S.X. Bao, Y.M. Zhang, and L. Liang, Effect of support properties on preparation process and adsorption performances of solvent impregnated resins, React. Funct. Polym., 113(2017), p. 50.

    Article  CAS  Google Scholar 

  11. Z.H. Huang, Z.Y. Yang, F.Y. Kang, and M. Inagaki, Carbon electrodes for capacitive deionization, J. Mater. Chem. A, 5(2017, No. 2, p. 470.

    Article  CAS  Google Scholar 

  12. C.Y. Zhang, D. He, J.X. Ma, W.W. Tang, and T.D. Waite, Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review, Water Res., 128(2018), p. 314.

    Article  CAS  Google Scholar 

  13. Y. Oren, Capacitive deionization (CDI) for desalination and water treatment — Past, present and future (a review), Desalination, 228(2008, No. 1-3, p. 10.

    Google Scholar 

  14. K.B. Hatzell, E. Iwama, A. Ferrs, B. Daffos, K. Urita, T. Tzedakis, F. Chauvet, P.L. Taberna, Y. Gogotsi, and P. Simon, Capacitive deionization concept based on suspension electrodes without ion exchange membranes, Electrochem. Commun., 43(2014), p. 18.

    Article  CAS  Google Scholar 

  15. J.Y. Zhou, Y.M. Zhang, and S.X. Bao, Preparation and selective adsorption property of the ion-exchange resin/carbon composite electrode, Ind. Saf. Environ. Prot., 42(2016, No. 12, p. 51.

    Google Scholar 

  16. Y.J. Kim and J.H. Choi, Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization, Water Res., 46(2012, No. 18, p. 6033.

    Article  CAS  Google Scholar 

  17. D.H. Lee, T. Ryu, J. Shin, J.C. Ryu, K.S. Chung, and Y.H. Kim, Selective lithium recovery from aqueous solution using a modified membrane capacitive deionization system, Hydrometallurgy, 173(2017), p. 283.

    Article  CAS  Google Scholar 

  18. J.H. Yeo and J.H. Choi, Enhancement of nitrate removal from a solution of mixed nitrate, chloride and sulfate ions using a nitrate- selective carbon electrode, Desalination, 320(2013), p. 10.

    Article  CAS  Google Scholar 

  19. Y.Y. Cui, S.X. Bao, Y.M. Zhang, and J.H. Duan, Adsorption characteristics of vanadium on different resin-active carbon composite electrodes in capacitive deionization, Chemosphere, 212(2018), p. 34.

    Article  CAS  Google Scholar 

  20. J.H. Duan, S.X. Bao, and Y.M. Zhang, The characteristics of resin/carbon composite electrode and application in selective adsorption of vanadium(IV) by capacitive deionization, Chem. Eng. Res. Des., 132(2018), p. 178.

    Article  CAS  Google Scholar 

  21. S.X. Bao, J.H. Duan, and Y.M. Zhang, Recovery of V(V) from complex vanadium solution using capacitive deionization (CDI) 1786 Int. J. Miner. Metall. Mater., Vol. 28 , No. 11, Nov. 2021 with resin/carbon composite electrode, Chemosphere, 208(2018), p. 14.

    Google Scholar 

  22. J. Villarroel-Rocha, D. Barera, and K. Sapag, Introducing a self-consistent test and the corresponding modification in the Barrett, Joyner and Halenda method for pore-size determination, Microporous Mesoporous Mater., 200(2014), p. 68.

    Article  CAS  Google Scholar 

  23. H. Yuh-shan, Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientometrics, 59(2004, No. 1, p. 171.

    Article  Google Scholar 

  24. P.J. Lin, J.J. Wu, J.M. Ahn, and J. Lee, Adsorption characteristics of Cd(II) and Ni(II) from aqueous solution using succinylated hay, Int. J. Miner. Metall. Mater., 26(2019, No. 10, p. 1239.

    Article  CAS  Google Scholar 

  25. N. Öztürk and T.E. Köse, A kinetic study of nitrite adsorption onto sepiolite and powdered activated carbon, Desalination, 223(2008, No. 1-3, p. 174.

    Article  CAS  Google Scholar 

  26. Y.S. Ho and G. Mckay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Process Saf. Environ. Prot., 76(1998, No. 4, p. 332.

    Article  CAS  Google Scholar 

  27. A. Sari, M. Tuzen, D. Citak, and M. Soylak, Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay, J. Hazard. Mater., 149(2007, No. 2, p. 283.

    Article  CAS  Google Scholar 

  28. G.E. Boyd, A.W. Adamson, and L.S. Myers, The exchange adsorption of ions from aqueous solutions by organic zeolites: Kinetics, J. Am. Chem. Soc., 69(1947, No. 11, p. 2836.

    Article  CAS  Google Scholar 

  29. M.K. Aroua, S.P.P. Leong, L.Y. Teo, C.Y. Yin, and W.M.A.W. Wandaud, Real-time determination of kinetics of adsorption of lead(II) onto palm shell-based activated carbon using ion selective electrode, Bioresour. Technol., 99(2008, No. 13, p. 5786.

    Article  CAS  Google Scholar 

  30. D.E. Egirani, N.R. Poyi, and N. Wessey, Synthesis of a copper(II) oxide-montmorillonite composite for lead removal, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 803.

    Article  CAS  Google Scholar 

  31. E.Z. Li, H.B. Liang, Z.P. Du, D. Li, and F.Q. Cheng, Adsorption process of Octadecylamine Hydrochloride on KCl crystal surface in various salt saturated solutions: Kinetics, isotherm model and thermodynamics properties, J. Mol. Liq., 221(2016), p. 949.

    Google Scholar 

  32. Y.X. He, L.M. Zhang, X. An, G.P. Wan, W.J. Zhu, and Y.M. Luo, Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina: Adsorption isotherms, kinetics, thermodynamics and mechanism, Sci. Total Environ., 688(2019), p. 184.

    Article  CAS  Google Scholar 

  33. Y. Wimalasiri, M. Mossad, and L.D. Zou, Thermodynamics and kinetics of adsorption of ammonium ions by graphene laminate electrodes in capacitive deionization, Desalination, 357(2015), p. 178.

    Article  CAS  Google Scholar 

  34. X.C. Lu, J.C. Jiang, K. Sun, X.P. Xie, and Y.M. Hu, Surface modification, characterization and adsorptive properties of a coconut activated carbon, Appl. Surf. Sci., 258(2012, No. 20, p. 8247.

    Google Scholar 

  35. W.L. Zhang, J. Yin, Z.Q. Lin, H.B. Lin, H.Y. Lu, Y. Wang, and W.M. Huang, Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance, Electrochim. Acta, 176(2015), p. 1136.

    Article  CAS  Google Scholar 

  36. J.Y. Liu, S.P. Wang, J.M. Yang, J.J. Liao, M. Lu, H.J. Pan, and L. An, ZnCl2 activated electrospun carbon nanofiber for capacitive desalination, Desalination, 344(2014), p. 446.

    Article  CAS  Google Scholar 

  37. X. Liu, T. Chen, W.C. Qiao, Z. Wang, and L. Yu, Fabrication of graphene/activated carbon nanofiber composites for high performance capacitive deionization, J. Taiwan Inst. Chem. Eng., 72(2017), p. 213.

    Article  CAS  Google Scholar 

  38. P.I. Liu, L.C. Chung, C.H. Ho, H. Shao, T.M. Liang, M.C. Chang, C.C.M. Ma, and R.Y. Horng, Comparative insight into the capacitive deionization behavior of the activated carbon electrodes by two electrochemical techniques, Desalination, 379(2016), p. 34.

    Article  CAS  Google Scholar 

  39. Y. Li, Q. Xie, W. Yan, Y. Wang, and Z.H. Zhang, Adsorption of K+ from an aqueous phase onto an activated carbon used as an electric double-layer capacitor electrode, Min. Sci. Technol. China, 20(2010, No. 4, p. 551.

    Article  CAS  Google Scholar 

  40. K. Navneet, K. Manpreet, and S. Dhanwinder, Fabrication of mesoporous nanocomposite of graphene oxide with magnesium ferrite for efficient sequestration of Ni(II) and Pb(II) ions: Adsorption, thermodynamic and kinetic studies, Environ. Pollut., 253(2019), p. 111.

    Article  CAS  Google Scholar 

  41. C. Aharoni and F.C. Tompkins, Kinetics of adsorption and desorption and the Elovich equation, Adv. Catal., 21(1970), p. 1.

    CAS  Google Scholar 

  42. Y.Y. Liu, Y. Xiong, P. Xu, Y. Pang, and C.Y. Du, Enhancement of Pb(II) adsorption by boron doped ordered mesoporous carbon: Isotherm and kinetics modeling, Sci. Total Environ., 708(2020), No. 15, art. No. 134918.

    Article  CAS  Google Scholar 

  43. N. Boukhalfa, M. Boutahala, N. Djebri, and A. Idris, Kinetics, thermodynamics, equilibrium isotherms, and reusability studies of cationic dye adsorption by magnetic alginate/oxidized multiwalled carbon nanotubes composites, Int. J. Biol. Macromol., 123(2019), p. 539.

    Article  CAS  Google Scholar 

  44. Q. Tian, J.G. Yang, and X.J. Bai, Insight into the change in carbon structure and thermodynamics during anthracite transformation into graphite, Int. J. Miner. Metall. Mater., 27(2020, No. 2, p. 162.

    Article  CAS  Google Scholar 

  45. Q.L. Hong, Y.H. Dong, W. Zuang, C. Rao, and C. Liu, Kinetics and thermodynamics of lysozyme adsorption on mesoporous titanium dioxide, Acta Phys. Chim. Sin., 32(2016), No. 3, p. 638.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51874222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-xu Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Xm., Bao, Sx. & Zhang, Ym. Adsorption properties of V(IV) on resin-activated carbon composite electrodes in capacitive deionization. Int J Miner Metall Mater 28, 1777–1787 (2021). https://doi.org/10.1007/s12613-020-2100-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2100-6

Keywords

Navigation