Skip to main content
Log in

Improvement of capacitive deionization performance via using a Tiron-grafted TiO2 nanoparticle layer on porous carbon electrode

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A novel ion-selective inorganic-carbon composited electrode was designed to improve the performance of a capacitive deionization (CDI) process. Disodium 4,5-dihydroxy-1,3-benzenedisulfonate (Tiron) was grafted on the surface of titania nanoparticles, and a thin titania layer with a thickness of 10-12 μm was formed on porous activated-carbon (AC) electrode and used as the negative electrode in a CDI full cell. The resulting Tiron-grafted titania nanoparticles showed an excellent ion-exchange capacity (1.51 meq/g). As a result, the Tiron-titania/AC composited electrode was found to have improved desalination properties in terms of specific adsorption capacity, specific adsorption rate and current efficiency compared with the pristine CDI electrode. Improved desalination performance was attributed to a reduction in co-ion expulsion effect by ion-exchangeable functional groups in Tiron-grafted titania. In addition, the improved desalination performance through the introduction of a porous layer of Tiron-grafted titania was similar to that of the conventional membrane capacitive deionization (MCDI) using an ion-exchange membrane. From the results obtained, it has been experimentally proven that the use of Tiron-grafted TiO2/AC composite as the negative electrode in the CDI process is a simple and effective way to achieve high desalination performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Welgemoed and C. F. Schutte, Desalination, 183, 327 (2005).

    Article  CAS  Google Scholar 

  2. Y. Oren, Desalination, 228, 10 (2008).

    Article  CAS  Google Scholar 

  3. M. A. Anderson, A. L. Cudero and J. Palma, Electrochim. Acta, 55, 3845 (2010).

    Article  CAS  Google Scholar 

  4. S. Porada, R. Zhao, A. van der Wal, V. Presser and P. M. Biesheuvel, Prog. Mater. Sci., 58, 1388 (2013).

    Article  CAS  Google Scholar 

  5. I. J. Esfanhani, J. Rashidi, P. Ifaei and C. Yoo, Korean J. Chem. Eng., 33, 351 (2016).

    Article  Google Scholar 

  6. R. Zhao, S. Porada, P. M. Biesheuvel and A. van der Wal, Desalination, 330, 35 (2013).

    Article  CAS  Google Scholar 

  7. M. E. Suss, S. Porada, X. Sun, P. M. Bieheuvel, J. Yoon and V. Presser, Energy Environ. Sci., 8, 2296 (2015).

    Article  CAS  Google Scholar 

  8. C. Lian, K. Liu, K. L. Van Aken, Y. Gogotsi, D. J. Wesolowski, H. L. Liu, D. E. Jiang and J. Z. Wu, ACS Energy Lett., 1, 21 (2016).

    Article  CAS  Google Scholar 

  9. Z.-H. Huang, Z. Yang, F. Kang and M. Inagaki, J. Mater. Chem. A, 5, 470 (2017).

    Article  CAS  Google Scholar 

  10. M. Wang, X. Xu, Y. Liu, Y. Li, T. Lu and L. Pan, Carbon, 108, 433 (2016).

    Article  CAS  Google Scholar 

  11. Y.-C. Tsai and R.-A. Doong, Desalination, 398, 171 (2016).

    Article  CAS  Google Scholar 

  12. R. Moradi, J. Karimi-Sabet, M. Shariaty-niassar and Y. Amini, Korean J. Chem. Eng., 33, 2953 (2016).

    Article  CAS  Google Scholar 

  13. P. H. Kim and K.Y. Jung, RSC Adv., 6, 1686 (2016).

    Article  CAS  Google Scholar 

  14. N. Jo, J.-H. Choi and K.Y. Jung, J. Electrochem. Soc., 160, E84 (2013).

    Article  CAS  Google Scholar 

  15. L. Zou, G. Morris and D. Qi, Desalination, 225, 329 (2008).

    Article  CAS  Google Scholar 

  16. G. Wang, B. Qian, Q. Dong, J. Yang, Z. Zhao and J. Qiu, Sep. Purif. Technol., 103, 216 (2013).

    Article  CAS  Google Scholar 

  17. Y. Bian, X. Yang, P. Liang, Y. Jiang, C. Zhang and X. Huang, Water Res., 85, 371 (2015).

    Article  CAS  Google Scholar 

  18. J. Kim, D.-H. Peck, B. Lee, S.-H. Yoon and D.-H. Jung, New Carbon Mater., 31, 378 (2016).

    Article  Google Scholar 

  19. P. Xu, J. E. Drewes, D. Heil and G. Wang, Water Res., 42, 2605 (2008).

    Article  CAS  Google Scholar 

  20. R. Kumar, S.S. Gupta, S. Katiyar, V.K. Raman, S.K. Varigala, T. Pradeep and A. Sharma, Carbon, 99, 375 (2016).

    Article  CAS  Google Scholar 

  21. Y. Liu, G. Nie, L. Pan, X. Xu, Z. Sun and D. H. C. Chua, Inorg. Chem. Front., 1, 249 (2014).

    Article  CAS  Google Scholar 

  22. H. Li, S. Liang, J. Li and L. He, J. Mater. Chem. A, 1, 6335 (2013).

    Article  CAS  Google Scholar 

  23. H. Li, Y. Ma and R. Niu, Sep. Purif. Technol., 171, 93 (2016).

    Article  CAS  Google Scholar 

  24. H. Zhang, P. Liang, Y. Bian, Y. Jiang, X. Sun, C. Zhang, X. Huang and F. Wei, RSC Adv., 6, 58907 (2016).

    Article  CAS  Google Scholar 

  25. X. Wen, D. Zhang, T. Yan, J. Zhang and L. Shi, J. Mater. Chem. A, 1, 12334 (2013).

    Article  CAS  Google Scholar 

  26. Z.-Y. Yang, L.-J. Jin, G.-Q. Lu, Q.-Q. Xiao, Y.-X. Zhang, L. Jing, X.-X. Zhang, Y.-M. Yan and K.-N. Sun, Adv. Funct. Mater., 24, 3917 (2014).

    Article  CAS  Google Scholar 

  27. H. Yin, S. Zhao, J. Wan, H. Tang, L. Chang, L. He, H. Zhao, Y. Gao and Z. Tang, Adv. Mater., 25, 6270 (2013).

    Article  CAS  Google Scholar 

  28. X. Xu, L. Pan, Y. Liu, T. Lu, Z. Sun and D. H. C. Chua, Sci. Rep., 5, 8458 (2015).

    Article  CAS  Google Scholar 

  29. P.M. Biesheuvel, S. Porada, M. Levi and M.Z. Bazant, J. Solid State Electrochem., 18, 1365 (2014).

    Article  CAS  Google Scholar 

  30. X. Gao, J. Landon, J. K. Neathery and K. Liu, J. Electrochem. Soc., 160, E106 (2013).

    Article  CAS  Google Scholar 

  31. A. Omosebi, X. Gao, J. Landon and K. Liu, ACS Appl. Mater. Interfaces, 6, 12640 (2014).

    Article  CAS  Google Scholar 

  32. P.M. Biesheuvel and A. van der Wal, J. Membr. Sci., 346, 256 (2010).

    Article  CAS  Google Scholar 

  33. R. Zhao, P. M. Biesheuvel and A. van der Wal, Energy Environ. Sci., 5, 9520 (2012).

    Article  CAS  Google Scholar 

  34. J.-H. Lee and J.-H. Choi, J. Membr. Sci., 409-410, 251 (2012).

    Article  CAS  Google Scholar 

  35. H. Li, F. Zaviska, S. Liang, J. Li, L. He and H.Y. Yang, J. Mater. Chem. A, 2, 3484 (2014).

    Article  CAS  Google Scholar 

  36. P. Liu, H. Wang, T. Yan, J. Zhang, L. Shi and D. Zhang, J. Mater. Chem. A, 4, 5303 (2016).

    Article  CAS  Google Scholar 

  37. B. Jia and L. Zou, Chem. Phys. Lett., 548, 23 (2012).

    Article  CAS  Google Scholar 

  38. K. Laxman, M.T. Z. Myint, R. Khan, T. Pervez and J. Dutta, Water Desalination, 359, 64 (2015).

    CAS  Google Scholar 

  39. A.G. El-Deen, R. M. Boom, H.Y. Kim, H. Duan, M.B. Chan-Park and J.-H. Choi, ACS Appl. Mater. Interfaces, 8, 25313 (2016).

    Article  CAS  Google Scholar 

  40. T. Wu, G. Wang, F. Zhang, Q. Dong, Q. Ren, J. Wang and J. Qiu, Water Res., 39, 30 (2016).

    Article  Google Scholar 

  41. B. Qian, G. Wang, Z. Ling, Q. Dong, T. Wu, X. Zhang and J. Qiu, Adv. Mater. Interfaces, 2, 1500372 (2015).

    Article  Google Scholar 

  42. Y.-J. Kim and J.-H. Choi, Water Res., 44, 990 (2010).

    Article  CAS  Google Scholar 

  43. J.-S. Kim and J.-H. Choi, J. Membr. Sci., 355, 85 (2010).

    Article  CAS  Google Scholar 

  44. Y.-J. Kim and J.-H. Choi, Water Res., 46, 6033 (2012).

    Article  CAS  Google Scholar 

  45. M. Moochani, A. Moghadassi, S. M. Hosseini, E. Bagheripour and F. Parvizian, Korean J. Chem. Eng., 33, 2674 (2016).

    Article  CAS  Google Scholar 

  46. J. S. Kim, Y.S. Jeon and J.W. Rhim, Sep. Purif. Technol., 157, 45 (2016).

    Article  CAS  Google Scholar 

  47. X. Gao, A. Omosebi, N. Holubowitch, A. Liu, K. Ruh, J. Landon and K. Liu, Desalination, 399, 16 (2016).

    Article  CAS  Google Scholar 

  48. T. Xu, W. Hou, X. Shen, H. Wu, X. Li, J. Wang and Z. Jiang, J. Power Sources, 196, 4934 (2011).

    Article  CAS  Google Scholar 

  49. H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen and Z. Sun, Water Res., 42, 4923 (2008).

    Article  CAS  Google Scholar 

  50. Y.-J. Kim and J.-H. Choi, Sep. Purif. Technol., 71, 70 (2010).

    Article  CAS  Google Scholar 

  51. T. Kim and J. Yoon, RSC Adv., 5, 1456 (2015).

    Article  CAS  Google Scholar 

  52. D. Zhang, T. Yan, L. Shi, Z. Peng, X. Wen and J. Zhang, J. Mater. Chem., 22, 14696 (2012).

    Article  CAS  Google Scholar 

  53. B.-H. Park and J.-H. Choi, Electrochim. Acta, 55, 2888 (2010).

    Article  CAS  Google Scholar 

  54. A. Singh and A. Chandra, Sci. Rep., 6, 25793 (2016).

    Article  CAS  Google Scholar 

  55. S.-K. Kim and H. S. Park, RSC Adv., 4, 47827 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyeong Youl Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, B.H., Choi, JH. & Jung, K.Y. Improvement of capacitive deionization performance via using a Tiron-grafted TiO2 nanoparticle layer on porous carbon electrode. Korean J. Chem. Eng. 35, 272–282 (2018). https://doi.org/10.1007/s11814-017-0270-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0270-3

Keywords

Navigation