Skip to main content
Log in

Effect of Ni on the corrosion resistance of bridge steel in a simulated hot and humid coastal-industrial atmosphere

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The corrosion resistance of weathering bridge steels containing conventional contents of Ni (0.20wt%, 0.42wt%, 1.50wt%) and a higher content of Ni (3.55wt%) in a simulated hot and humid coastal-industrial atmosphere was investigated by corrosion depth loss, scanning electron microscopy–energy-dispersive X-ray spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical methods. The results showed that, with increasing Ni content, the mechanical properties of the bridge steel were markedly improved, the welding parameters were satisfactory at room temperature, and the corrosion resistance was enhanced. When the Ni content was low (≤0.42wt%), the crystallization process of the corrosion products was substantially promoted, enhancing the stability of the rust layer. When the Ni content was higher (~3.55wt%), the corrosion reaction of the steel quickly reached a balance, because the initial rapid corrosion induced the formation of a protective rust layer in the early stage. Simultaneously, NiO and NiFe2O2 were generated in large quantities; they not only formed a stable, compact, and continuous oxide protective layer, but also strongly inhibited the transformation process of the corrosion products. This inhibition reduced the structural changes in the rust layer, thereby enhancing the protection. However, when the Ni content ranged from 0.42wt% to 1.50wt%, the corrosion resistance of the bridge steel increased only slightly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Albrecht and T.T. Hall Jr, Atmospheric corrosion resistance of structural steels, J. Mater. Civ. Eng., 15(2003), No. 1, p. 2.

    Article  Google Scholar 

  2. Y.Q. Liu and A.R. Chen, Development and design essentials of weathering steel bridges, Bridge Constr., 5(2003), p. 39.

    Google Scholar 

  3. D.J. Yang and Z.S. Shen, Metal Corrosion Study, Metallurgical Industry Press, Beijing, 1999, p. 208.

    Google Scholar 

  4. C.N. Cao, Material Corrosion in Natural Environment of China, Chemical Industry Press, Beijing, 2005, p. 2.

    Google Scholar 

  5. C.L. Li, Y.T. Ma, Y. Li, and F.H. Wang, EIS monitoring study of atmospheric corrosion under variable relative humidity, Corros. Sci., 52(2010), No. 11, p. 3677.

    Article  Google Scholar 

  6. S.T. Wang, S.W. Yang, K.W. Gao, and X.L. He, Corrosion behavior and corrosion products of a low-alloy weathering steel in Qingdao and Wanning, Int. J. Miner. Metall. Mater., 16(2009), No. 1, p. 58.

    Article  Google Scholar 

  7. W.H. Zhang, S.W. Yang, J. Guo, Z.Y. Liu, and X.L. He, Incubation and development of corrosion in microstructures of low alloy steels under a thin liquid film of NaCl aqueous solution, Int. J. Miner. Metall. Mater., 17(2010), No. 6, p. 748.

    Article  Google Scholar 

  8. A.P. Yadav, A. Nishikata, and T. Tsuru, Electrochemical impedance study on galvanized steel corrosion under cyclic wet–dry conditions–influence of time of wetness, Corros. Sci., 46(2004), No. 1, p. 169.

    Article  Google Scholar 

  9. U.R. Evans and C.A.J. Taylor, Mechanism of atmospheric rusting, Corros. Sci., 12(1972), No. 3, p. 227.

    Article  Google Scholar 

  10. H.E. Townsend, Effects of alloying elements on the corrosion of steel in industrial atmospheres, Corrosion, 57(2001), No. 6, p. 497.

    Article  Google Scholar 

  11. H. Nait&Ocirc, Y. Hosoi, H. Okada, and K. Inouye, Effect of alloying elements in steel on the corrosion behavior in neutral solutions: fundamental studies of the atmospheric corrosion of low-alloy steels, Corros. Eng., 16(1967), No. 5, p. 191.

    Article  Google Scholar 

  12. G.L. Cao, G.M. Li, S. Chen, W.S. Chang, and X.Q. Chen, Comparison on pitting corrosion resistance of nickel and chromium in typical sea water resistance steels, Acta Metall. Sin., 46(2010), No. 6, p. 748.

    Article  Google Scholar 

  13. A. Nishikata, Y. Yamashita, H. Katayama, T. Tsuru, A. Usami, K. Tanabe, and H. Mabuchi, An electrochemical impedance study on atmospheric corrosion of steels in a cyclic wet–dry condition, Corros. Sci., 37(1995), No. 12, p. 2059.

    Article  Google Scholar 

  14. T. Nishimura, H. Katayama, K. Noda, and T. Kodama, Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments, Corros. Sci., 42(2000), No. 9, p. 1611.

    Article  Google Scholar 

  15. T. Nishimura and T. Kodama, Analysis of chemical state for alloying elements in iron rust, Tetsu-to-Hagane, 88(2002), No. 6, p. 320.

    Article  Google Scholar 

  16. T. Nishimura and T. Kodama, Clarification of chemical state for alloying elements in iron rust using a binary–phase potential–pH diagram and physical analyses, Corros. Sci., 45(2003), No. 5, p. 1073.

    Article  Google Scholar 

  17. A. Nishikata, F. Suzuki, and T. Tsuru, Corrosion monitoring of nickel-containing steels in marine atmospheric environment, Corros. Sci., 47(2005), No. 10, p. 2578.

    Article  Google Scholar 

  18. H. Kihira, S. Ito, S. Mizoguchi, T. Murata, A. Usami, and K. Tanabe, Creation of alloy design concept for anti air-born salinity weathering steel, Zairyo-to-Kankyo, 49(2000), No. 1, p. 30.

    Article  Google Scholar 

  19. A. Nishikata, Q.J. Zhu, and E. Tada, Long-term monitoring of atmospheric corrosion at weathering steel bridges by an electrochemical impedance method, Corros. Sci., 87(2014), p. 80.

    Article  Google Scholar 

  20. J.L. Gu, R. Yan, H. Jun, and Y. Fumio, Effect of Ni content on atmospheric corrosion of low alloy steels, Corros. Prot., 31(2010), No. 1, p. 5.

    Google Scholar 

  21. X.Q. Cheng, Z. Jin, M. Liu, and X.G. Li, Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres, Corros. Sci., 115(2017), p. 135.

    Article  Google Scholar 

  22. X.Q. Cheng, Y.W. Tian, X.G. Li, and C. Zhou, Corrosion behavior of nickel-containing weathering steel in simulated marine atmospheric environment, Mater. Corros., 65(2014), No. 10, p. 1033.

    Article  Google Scholar 

  23. R. Liu, X.P. Chen, X.D. Wang, Q.N. Shi, F.Y. Mi, and Y. Li, Effect of nickel on corrosion resistance of weathering steels in a simulated marine atmosphere environment, Corros. Sci. Prot. Technol., 28(2016), No. 2, p. 122.

    Google Scholar 

  24. X.H. Chen, J.H. Dong, E.H. Han, and W. Ke, Effect of Ni on the ion-selectivity of rust layer on low alloy steel, Mater. Lett., 61(2007), No. 19-20, p. 4050.

    Article  Google Scholar 

  25. X.L. Gao, G.Q. Fu, and M.Y. Zhu, Effect of nickel on ion-selective property of rust formed on low-alloying weathering steel, Acta Metall. Sin. Engl. Lett., 25(2012), No. 4, p. 295.

    Google Scholar 

  26. I. Diaz, H. Cano, D. de la Fuente, B. Chico, J.M. Vega, and M. Morcillo, Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity, Corros. Sci., 76(2013), p. 348.

    Article  Google Scholar 

  27. H. Cano, D. Neff, M. Morcillo, P. Dillmann, I. Diaz, and D. de la Fuente, Characterization of corrosion products formed on Ni 2.4 wt%–Cu 0.5 wt%–Cr 0.5 wt% weathering steel exposed in marine atmospheres, Corros. Sci., 87(2014), p. 438.

    Article  Google Scholar 

  28. H.S. Karayannis and G. Patermarakis, Effect of the Cl-and SO 2–4 ions on the selective orientation and structure of Ni electrodeposits, Electrochim. Acta, 40(1995), No. 9, p. 1079.

    Article  Google Scholar 

  29. K. Noda, T. Nishimura, H. Masuda, and T. Kodama, Ion selective permeability of the rust layer on Fe–Co and Fe–Ni low alloy steel, J. Jpn. Inst. Met., 63(1999), No. 9, p. 1133.

    Article  Google Scholar 

  30. F. Corvo, T. Perez, L.R. Dzib, Y. Martin, A. Castañeda, E. Gonzalez, and J. Perez, Outdoor–indoor corrosion of metals in tropical coastal atmospheres, Corros. Sci., 50(2008), No. 1, p. 220.

    Article  Google Scholar 

  31. F. Corvo, T. Pérez, Y. Martin, J. Reyes, L.R. Dzib, J. González-Sánchez, and A. Castañeda, Time of wetness in tropical climate: considerations on the estimation of TOW according to ISO 9223 standard, Corros. Sci., 50(2008), No. 1, p. 206.

    Article  Google Scholar 

  32. J.G. Castaño, C.A. Botero, A.H. Restrepo, E.A. Agudelo, E. Correa, and F. Echeverría, Atmospheric corrosion of carbon steel in Colombia, Corros. Sci., 52(2010), No. 1, p. 216.

    Article  Google Scholar 

  33. Y.T. Ma, Y. Li, and F.H. Wang, The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment, Corros. Sci., 52(2010), No. 5, p. 1796.

    Article  Google Scholar 

  34. A.M. Guo and D.H. Zou, Current situation of bridge steel and development of weathering bridge steel in China, China Steel, 2008, No. 9, p. 18.

    Google Scholar 

  35. A.M. Guo, H.X. Dong, and D.H. Zou, Study on corrosion resistance of high strength weathering bridge steel produced by WISCO, [in] The China’s Annual Conference of Steel Rolling Production Technology, Dalian, 2008.

    Google Scholar 

  36. M. Morcillo, B. Chico, I. Díaz, H. Cano, and D. de la Fuente, Atmospheric corrosion data of weathering steels: A review, Corros. Sci., 77(2013), p. 6.

    Article  Google Scholar 

  37. K. Asami and M. Kikuchi, In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years, Corros. Sci., 45(2003), No. 11, p. 2671.

    Article  Google Scholar 

  38. Ministry of Railways, PRC, TB/T 2375–1993, Wet/Dry Cyclic Corrosion Test of Weathering Steel Using for Railway, China Railway Press, Beijing, 1993.

  39. E. Burger, M. Fénart, S. Perrin, D. Neff, and P. Dillmann, Use of the gold markers method to predict the mechanisms of iron atmospheric corrosion, Corros. Sci., 53(2011), No. 6, p. 2122.

    Article  Google Scholar 

  40. W.J. Chen, L. Hao, J.H. Dong, W. Ke, and H.L. Wen, Effect of SO2 on corrosion evolution of Q235B steel in simulated coastal-industrial atmosphere, Acta Metall. Sin., 50(2014), No. 7, p. 802.

    Google Scholar 

  41. L. Cui, S.W. Yang, S.T. Wang, K.W. Gao, W. Liu, and X.L. He, Corrosion behavior and corrosion products of a low carbon bainite steel in three kinds of typical environments, J. Univ. Sci. Technol. Beijing, 31(2009), No. 3, p. 306.

    Google Scholar 

  42. C.N. Cao, Principles of Electrochemistry of Corrosion, 3rd ed., Chemical Industry Press, Beijing, 2008, p. 177.

    Google Scholar 

  43. Y. Wang, S.L. Jiang, Y.G. Zheng, W. Ke, W.H. Sun, and J.Q. Wang, Electrochemical behaviour of Fe-based metallic glasses in acidic and neutral solutions, Corros. Sci., 63(2012), p. 159.

    Article  Google Scholar 

  44. Q. Qv, C.W. Yan, W. Bai, L. Zhang, Y. Wan, and C.N. Cao, Role of NaCl in the atmospheric corrosion of A3 steel, J. Chin. Soc. Corros. Prot., 23(2003), No. 3, p. 160.

    Google Scholar 

  45. D.L. Li, G.Q. Fu, M.Y. Zhu, and H.J. Zhang, Effect of SO2 pollution on corrosion behavior of Q235B steel in hot and humid marine atmosphere, Iron Steel, 52(2017), No. 1, p. 64.

    Google Scholar 

  46. C. Lin, Q. Zhao, Y.E. Liu, and J.N. Liang, Evolution of corrosion products of 20 carbon steel in atmosphere containing SO2, Acta Metall. Sin., 46(2010), No. 3, p. 358.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51304040) and the Fundamental Research Funds for the Central Universities (No. N150204008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao-yong Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Dl., Fu, Gq., Zhu, My. et al. Effect of Ni on the corrosion resistance of bridge steel in a simulated hot and humid coastal-industrial atmosphere. Int J Miner Metall Mater 25, 325–338 (2018). https://doi.org/10.1007/s12613-018-1576-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-018-1576-9

Keywords

Navigation