Skip to main content

Advertisement

Log in

Structure and Electrochemical Behavior of the Rust on 690 MPa Grade Construction Steel in a Simulated Industrial Atmosphere

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this article, the rusting evolution of 690 MPa grade multifunctional construction structural steel was investigated under a simulated industrial atmospheric environment. The corrosion product stabilization process was examined using the corrosion mass loss method, electrochemical measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). The results indicated that the corrosion kinetics exhibited a two-stage process, including a rapid stage followed by a slow stage. The initial sharp rise in corrosion rate was related to the involvement of reducible corrosion products in the cathode reduction process, which accelerated the dissolution of the anodic steel substrate. The appearance of the inflection point in the corrosion stage was strongly associated with the accumulation of corrosion products. As the corrosion time progressed, the corrosion products changed from porous to compact structures because of the synergistic effects of Cu, Ni, and Cr. This compact, thick, and uniform rust layer was identified to contain aggregates of crystalline γ-FeOOH along with a large number of fully grown flowery-shaped α-FeOOH on its top. Thus, the corrosion resistance increased when the rust layer gradually accumulated, and the diffusion of the corrosive ions was obstructed owing to the inhibited electrochemical corrosion. After a prolonged dry–wet cyclic corrosion, the rust layer led to stress cracking, but its self-repairing ability would make the cracks die.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T.Y. Zhang, W. Liu, Z. Yin, B.J. Dong, Y.G. Zhao, Y.M. Fan, J.S. Wu, Z. Zhang, and X.G. Li: J. Mater. Eng. Perform., 2020, vol. 29, pp. 2531–41.

    Article  CAS  Google Scholar 

  2. S. Sabir and A.A. Ibrahim: Corros. Eng. Sci. Technol., 2017, vol. 52, pp. 276–82.

    Article  CAS  Google Scholar 

  3. W. Wu, X.Q. Cheng, J.B. Zhao, and X.G. Li: Corros. Sci., 2020, vol. 165, 108416.

    Article  CAS  Google Scholar 

  4. Z.Y. Liu, M. Zhao, X.L. Wang, and J.G. Li: J. B. Univ. Chem. Technol. (Nat. Sci. Ed.), 2016, vol. 43, pp. 57–62.

    CAS  Google Scholar 

  5. Z.Y. Chen, Z.G. Lin, J.J. Qi, Y. Feng, L.Q. Chen, and G.D. Wang: Acta Metall. Sin. Engl. Lett., 2022, https://doi.org/10.1007/s40195-021-01359-2.

    Article  Google Scholar 

  6. W.M. Liu, J. Liu, H.B. Pan, F.B. Cao, Z.J. Wu, H.H. Lv, and Z.Y. Xu: J. Alloys Compd., 2020, vol. 834, 155095.

    Article  CAS  Google Scholar 

  7. W. Wu, Z.Y. Liu, X.G. Li, C.W. Du, and Z.Y. Cui: Mater. Sci. Eng. A, 2019, vol. 759, pp. 124–41.

    Article  CAS  Google Scholar 

  8. W. Wu, Z.Y. Liu, Q.Y. Wang, and X.G. Li: Corros. Sci., 2020, vol. 170, 108693.

    Article  CAS  Google Scholar 

  9. C. Pan, W. Han, Z.Y. Wang, C. Wang, and G.C. Yu: J. Mater. Eng. Perform., 2016, vol. 25, pp. 5382–90.

    Article  CAS  Google Scholar 

  10. T.L. Zhao, K. Liu, and Q. Li: Constr. Build. Mater., 2021, vol. 309, 125211.

    Article  CAS  Google Scholar 

  11. W.T. Zhu, J.J. Cui, Z.Y. Chen, Y. Feng, Y. Zhao, and L.Q. Chen: Acta Metall. Sin., 2021, vol. 57, pp. 340–52.

    CAS  Google Scholar 

  12. W.T. Zhu, J.J. Cui, Z.Y. Chen, Y. Zhao, and L.Q. Chen: Acta Metall. Sin. Engl. Lett., 2022, vol. 35, pp. 527–36.

    Article  CAS  Google Scholar 

  13. J.X. Yu, H.K. Wang, Y. Yu, Z. Luo, W.D. Liu, and C.M. Wang: Corros. Sci., 2018, vol. 133, pp. 276–87.

    Article  CAS  Google Scholar 

  14. R. Vera, R. Araya, C. Garín, S. Ossandón, and P. Rojas: Mater. Corros., 2019, vol. 70, pp. 1151–61.

    Article  CAS  Google Scholar 

  15. C. Martínez, F. Briones, M. Villarroel, and R. Vera: Materials, 2018, vol. 11, pp. 591–607.

    Article  CAS  Google Scholar 

  16. M. Yamashita, H. Konishi, T. Kozakura, J. Mizuki, and H. Uchida: Corros. Sci., 2005, vol. 47, pp. 2492–98.

    Article  CAS  Google Scholar 

  17. J. Alcántara, B. Chico, J. Simancas, I. Díaz, D. de la Fuente, and M. Morcillo: Mater. Charact., 2016, vol. 118, pp. 65–78.

    Article  CAS  Google Scholar 

  18. H. Chen, H.Y. Cui, Z.B. He, L. Lu, and Y.H. Huang: Mater. Chem. Phys., 2021, vol. 259, 123971.

    Article  CAS  Google Scholar 

  19. Y. Zhang, F. Huang, Q. Hu, Z.X. Peng, and J. Liu: Mater. Chem. Phys., 2020, vol. 241, 122045.

    Article  CAS  Google Scholar 

  20. S. Fonna, I.B.M. Ibrahim, Gunawarman, S. Huzni, M. Ikhsan, and S. Thalib: Heliyon, 2021, vol. 7, p. e06608.

    Article  CAS  Google Scholar 

  21. R.E. Melchers: Corros. Sci., 2013, vol. 68, pp. 186–94.

    Article  CAS  Google Scholar 

  22. J.F. Gu, Y. Xiao, N.W. Dai, X. Zhang, Q.Z. Ni, and J.X. Zhang: Corros. Eng. Sci. Techn., 2019, vol. 54, pp. 249–56.

    Article  CAS  Google Scholar 

  23. H.Y. Wu, H.G. Lei, Y.F. Chen, and J.Y. Qiao: Constr. Build. Mater., 2019, vol. 211, pp. 228–43.

    Article  Google Scholar 

  24. J.D. Fu, S. Wan, Y. Yang, Q. Su, W.W. Han, and Y.B. Zhu: Constr. Build. Mater., 2021, vol. 306, 124864.

    Article  CAS  Google Scholar 

  25. N.S. Palsson, K. Wongpinkaew, P. Khamsuk, S. Sorachot, and W. Pongsaksawad: Mater. Corros., 2019, vol. 71, pp. 1019–34.

    Article  CAS  Google Scholar 

  26. P. Cheng, J. Liu, X.Q. Huang, F. Huang, and T. Pang: Constr. Build. Mater., 2022, vol. 328, 127030.

    Article  CAS  Google Scholar 

  27. D. de la Fuente, I. Díaz, J. Simancas, B. Chico, and M. Morcillo: Corros. Sci., 2011, vol. 53, pp. 604–17.

    Article  CAS  Google Scholar 

  28. Q. Guo, Y. Zhao, Y. Xing, J.F. Jiao, B.Z. Fu, and Y.Q. Wang: Structures, 2022, vol. 39, pp. 115–31.

    Article  Google Scholar 

  29. Y.H. Qian, C.H. Ma, D. Niu, J.J. Xu, and M.S. Li: Corros. Sci., 2013, vol. 74, pp. 424–29.

    Article  CAS  Google Scholar 

  30. K. Wei and J.H. Dong: Acta Metall. Sin., 2010, vol. 46, pp. 1365–78.

    Google Scholar 

  31. M.E. Ikpi and B.O. Okonkwo: J. Mater. Environ. Sci., 2017, vol. 8, pp. 3809–16.

    CAS  Google Scholar 

  32. C. Thee, L. Hao, J.H. Dong, X. Mu, X. Wei, X.F. Li, and W. Ke: Corros. Sci., 2014, vol. 78, pp. 130–37.

    Article  CAS  Google Scholar 

  33. T.Y. Zhang, W. Liu, T. Chowwanonthapunya, B.J. Dong, Y.G. Zhao, and Y.M. Yang: J. Mater. Eng. Perform., 2020, vol. 29, pp. 5057–68.

    Article  CAS  Google Scholar 

  34. B. Qian, B.R. Hou, and M. Zheng: Corros. Sci., 2013, vol. 72, pp. 1–9.

    Article  CAS  Google Scholar 

  35. M. Hosseini, S.F.L. Mertens, M. Ghorbani, and M.R. Arshadi: Mater. Chem. Phys., 2003, vol. 78, pp. 800–08.

    Article  CAS  Google Scholar 

  36. H.Q. Fan, S.Y. Li, Z.C. Zhao, H. Wang, Z.C. Shi, and L. Zhang: Corros. Sci., 2011, vol. 53, pp. 4273–81.

    Article  CAS  Google Scholar 

  37. M. Cao, L. Liu, Z.F. Yu, L. Fan, Y. Li, and F.H. Wang: J. Mater. Sci. Technol., 2019, vol. 35, pp. 651–59.

    Article  CAS  Google Scholar 

  38. Y.Y. Chen, H.J. Tzeng, L.I. Wei, L.H. Wang, J.C. Oung, and H.C. Shih: Corros. Sci., 2005, vol. 47, pp. 1001–21.

    Article  CAS  Google Scholar 

  39. Y.L. Zhou, J. Chen, and Z.Y. Liu: J. Iron Steel Res. Int., 2013, vol. 20, pp. 66–73.

    Article  Google Scholar 

  40. E. Zitrou, J. Nikolaou, P.E. Tsakiridis, and G.D. Papadimitriou: Constr. Build. Mater., 2007, vol. 21, pp. 1161–69.

    Article  Google Scholar 

  41. R.R. Hussain, A. Al-Negheimish, A. Alhozaimy, and D.D.N. Singh: Cem. Concr. Compos., 2020, vol. 113, 103728.

    Article  CAS  Google Scholar 

  42. W.J. Chen, L. Hao, J.H. Dong, and W. Ke: Corros. Sci., 2014, vol. 83, pp. 155–63.

    Article  CAS  Google Scholar 

  43. C. Lin, Q. Zhao, Y.E. Liu, and J.N. Liang: Acta Metall. Sin., 2010, vol. 46, pp. 358–65.

    Article  CAS  Google Scholar 

  44. M. Kimura, H. Kihira, N. Ohta, M. Hashimoto, and T. Senuma: Corros. Sci., 2005, vol. 47, pp. 2499–2509.

    Article  CAS  Google Scholar 

  45. M. Stratmann, K. Bohnenkamp, and H.J. Engell: Corros. Sci., 1983, vol. 23, pp. 969–85.

    Article  CAS  Google Scholar 

  46. T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, and H. Uchida: Corros. Sci., 2006, vol. 48, pp. 2799–2812.

    Article  CAS  Google Scholar 

  47. M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, and T. Misawa: Corros. Sci., 1994, vol. 25, pp. 283–99.

    Article  Google Scholar 

  48. C. Pan, M.X. Guo, W. Han, Z.Y. Wang, and C. Wang: Corros. Eng. Sci. Techn., 2019, vol. 54, pp. 241–48.

    Article  CAS  Google Scholar 

  49. J.T. Keiser, C.W. Brown, and R.H. Heidersbach: J. Electrochem. Soc., 1982, vol. 129, pp. 2686–89.

    Article  CAS  Google Scholar 

  50. K. Asami and M. Kikuchi: Corros. Sci., 2003, vol. 45, pp. 2671–88.

    Article  CAS  Google Scholar 

  51. L. Hao, S.X. Zhang, J.H. Dong, and W. Ke: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1724–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Independent Project of State Key Laboratory of Rolling and Automation, Northeastern University (Grant No. ZZ202001), National Natural Science Foundation of China (Grant No. 51904071), the Key Research and Development Program of Hebei Province of China (Grant No. 18211019D), and Technical Development Program between HBIS Company Limited and NEU (Contract No. 2019040200044).

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqing Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Zhao, Y., Feng, Y. et al. Structure and Electrochemical Behavior of the Rust on 690 MPa Grade Construction Steel in a Simulated Industrial Atmosphere. Metall Mater Trans A 53, 3044–3056 (2022). https://doi.org/10.1007/s11661-022-06725-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06725-y

Navigation