Skip to main content
Log in

Effects of stress ratio on the temperature-dependent high-cycle fatigue properties of alloy steels

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress amplitude, high stress ratio, and high frequency in the high-temperature environments in which they function as blade and rotor spindle materials in advanced gas or steam turbine engines. Fatigue tests were performed on alloy steels 2CrMo and 9CrCo subjected to constant-amplitude loading at four stress ratios and at four and three temperatures, respectively, to determine their temperature-dependent HCF properties. The interaction mechanisms between high temperature and stress ratio were deduced and compared with each other on the basis of the results of fractographic analysis. A phenomenological model was developed to evaluate the effects of stress ratio on the temperature-dependent HCF properties of alloy steels 2CrMo and 9CrCo. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Zhou, J.Q. Wang, B. Zhang, W. Ke, and E.H. Han, High-temperature fatigue property of Ti46Al8Nb alloy with the fully lamellar microstructure, Intermetallics, 24(2012), No. 4, p. 7.

    Article  Google Scholar 

  2. M. Zimmermann, C. Stoecker, and H.J. Christ, High Temperature fatigue of nickel-based superalloys during high frequency testing, Procedia Eng., 55(2013), No. 12, p. 645.

    Article  Google Scholar 

  3. X.G. Yang, S.L. Li, and H.Y. Qi, Effect of MCrAlY coating on the low-cycle fatigue behavior of a directionally solidified nickel-base superalloy at different temperatures, Int. J. Fatigue, 75(2015), p. 126.

    Article  Google Scholar 

  4. K.A. Rozman, J.J. Kruzic, and J.A. Hawk, Fatigue crack growth behavior of nickel-base superalloy Haynes 282 at 550-750°C, J. Mater. Eng. Perform., 24(2015), No. 8, p. 2841.

    Article  Google Scholar 

  5. I.S. Kim, B.G. Choi, J.E. Jung, J. Do, and C.Y. Jo, Effect of microstructural characteristics on the low cycle fatigue behaviors of cast Ni-base superalloys, Mater. Charact., 106(2015), p. 375.

    Article  Google Scholar 

  6. D. Kulawinski, A. Weidner, S. Henkel, and H. Biermann, Isothermal and thermo-mechanical fatigue behavior of the nickel base superalloy Waspaloy™ under uniaxial and biaxial-planar loading, Int. J. Fatigue, 81(2015), p. 21.

    Article  Google Scholar 

  7. D. Kumar, K.N. Pandey, and D.K. Das, Microstructure studies of air-plasma-spray-deposited CoNiCrAlY coatings before and after thermal cyclic loading for high-temperature application, Int. J. Miner. Metall. Mater., 23(2016), No. 8, p. 934.

    Article  Google Scholar 

  8. M. Šmíd, V. Horník, P. Hutař, K. Hrbáček, and L. Kunz, High cycle fatigue damage mechanisms of MAR-M 247 superalloy at high temperatures, Trans. Indian. Inst. Met., 69(2016), No. 2, p. 393.

    Article  Google Scholar 

  9. Z.X. Shi, J.R. Li, S.Z. Liu, and M. Han, High cycle fatigue behavior of the second generation single crystal superalloy DD6, Trans. Nonferrous Met. Soc. China, 21(2011), No. 5, p. 998.

    Article  Google Scholar 

  10. X.G. Dong, J. Zhou, Y.J. Jia, and B. Liu, Effect of alloying on high temperature fatigue performance of ZL114A (Al-7Si) alloy, Trans. Nonferrous Met. Soc. China, 22(2012), Suppl. 3, p. s661.

    Article  Google Scholar 

  11. K. Horke, B. Ruderer, and R.F. Singer, Influence of sintering conditions on tensile and high cycle fatigue behaviour of powder injection moulded Ti-6Al-4V at ambient and elevated temperatures, Powder. Metall., 57(2014), No. 4, p. 283.

    Article  Google Scholar 

  12. B. Larrouy, P. Villechaise, J. Cormier, and O. Berteaux, Grain boundary–slip bands interactions: impact on the fatigue crack initiation in a polycrystalline forged Ni-based superalloy, Acta. Mater., 99(2015), p. 325.

    Article  Google Scholar 

  13. J.C. Stinville, W.C. Lenthe, J. Miao, and T.M. Pollock, A combined grain scale elastic–plastic criterion for identification of fatigue crack initiation sites in a twin containing polycrystalline nickel-base superalloy, Acta. Mater., 103(2016), p. 461.

    Article  Google Scholar 

  14. W.H. Qiu, Z.W. He, Y.N. Fan, H.J. Shi, and J.L. Gu, Effects of secondary orientation on crack closure behavior of nickel-based single crystal superalloys, Int. J. Fatigue., 83(2016), p. 335.

    Article  Google Scholar 

  15. F. Berto, P. Lazzarin, and P. Gallo, High-temperature fatigue strength of a copper–cobalt–beryllium alloy, J. Strain Anal. Eng. Des, 49(2013), No. 4, p. 244.

    Article  Google Scholar 

  16. P. Gallo, F. Berto, P. Lazzarin, and P. Luisetto, High temperature fatigue tests of Cu-Be and 40CrMoV13.9 alloys, Procedia Mater. Sci., 3(2014), p. 27.

    Article  Google Scholar 

  17. Z.X. Shi, M. Han, S.Z. Liu, and J.R. Li, Influence of cast dimension on rotary bending high cycle fatigue properties of single crystal superalloy, J. Iron. Steel. Res. Int., 20(2013), No. 12, p. 98.

    Article  Google Scholar 

  18. S. Cruchley, H.Y. Li, H.E. Evans, P. Bowen, D.J. Child, and M.C. Hardy, The role of oxidation damage in fatigue crack initiation of an advanced Ni-based superalloy, Int. J. Fatigue, 81(2015), p. 265.

    Article  Google Scholar 

  19. M. Zimmermann, C. Stöcker, and H.J. Christ, On the effects of particle strengthening and temperature on the VHCF behavior at high frequency, Int. J. Fatigue, 33(2011), No. 1, p. 42.

    Article  Google Scholar 

  20. X.M. Lü, S.L. Li, H.L. Zhang, Y.L. Wang, and X.T. Wang, Effect of thermal aging on the fatigue crack growth behavior of cast duplex stainless steels, Int. J. Miner. Metall. Mater., 22(2015), No. 11, p. 1163.

    Article  Google Scholar 

  21. C.J. Zhang, W.B. Hu, Z.X. Wen, H.C. Zhang, and Z.F. Yue, Influence of hot isostatic pressing on fatigue performance of K403 nickel-based superalloy, J. Alloys Compd., 655(2016), p. 114.

    Article  Google Scholar 

  22. M. Mansuri, S.M.M. Hadavi, and E. Zare, Effect of Al-Si pack cementation diffusion coating on high-temperature low-cycle fatigue behavior of Inconel 713LC, Metall. Mater. Trans. A, 47(2016), No. 1, p. 293.

    Article  Google Scholar 

  23. R.J. Morrissey, R. John, and J.W. Porter III, Fatigue variability of a single crystal superalloy at elevated temperature, Int. J. Fatigue, 31(2009), No. 11-12, p. 1758.

    Article  Google Scholar 

  24. L. Jiang, C.R. Brooks, P.K. Liaw, H. Wang, C.J. Rawn, and D.L. Klarstrom, High-frequency metal fatigue: the high-cycle fatigue behavior of ULTIMET® alloy, Mater. Sci. Eng. A, 314(2001), No. 1-2, p. 162.

    Article  Google Scholar 

  25. ASTM E468-90, Standard Practice for Presentation of Constant Amplitude Fatigue Test Results for Metallic Materials, American Society for Testing and Materials, 1990.

    Google Scholar 

  26. ASTM E739-91: Standard Practice for Statistical Analysis of Linear or Linearized Stress-life (S-N) and Strain-life (e-N) Fatigue Data, West Conshohocken, USA, 1991.

    Google Scholar 

  27. J.J. Xiong and R.A. Shenoi, Fatigue and Fracture Reliability Engineering, Springer, London, 2011, p. 7.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-jiang Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, Zy., Wan, As., Xiong, Jj. et al. Effects of stress ratio on the temperature-dependent high-cycle fatigue properties of alloy steels. Int J Miner Metall Mater 23, 1387–1396 (2016). https://doi.org/10.1007/s12613-016-1362-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1362-5

Keywords

Navigation