Skip to main content
Log in

Effect of High-Temperature Coatings on the Reliability Characteristics of GTE Blade Elements

  • HARDENING AND COATING TECHNOLOGIES
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The paper presents the results of experimental studies of the effect of high-temperature coatings on turbine and compressor blades made of high-temperature nickel and titanium alloys on the service life characteristics during gas corrosion, thermal loading, and thermomechanical loading: quantitative cracking resistance characteristics, fracture toughness K1C, and fatigue life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. N. V. Abraimov and Yu. S. Eliseev, Chemothermal Treatment of High-Temperature Steels and Alloys (Intermet Inzhiniring, Moscow, 2001).

    Google Scholar 

  2. E. N. Kablov, Cast Blades of Gas-Turbine Engines (Alloys, Technologies, and Coatings) (Nauka, Moscow, 2006).

    Google Scholar 

  3. N. V. Abraimov and V. A. Geikin, Temperature-Stable Coatings and Welding in Gas-Turbine Engines (Nauka Technol., Moscow, 2018).

    Google Scholar 

  4. N. V. Abraimov, “Combined coatings for gas-turbine blades,” Rus. Metall. (Metally), No. 12, (2018).

    Article  Google Scholar 

  5. S. A. Budinovskii, D. A. Chubarov, A. A. Smirnov, and P. V. Matveev, “Effect of the thickness of a ceramic layer of a heat protective coating on the heat conductivity coefficient,” Elektrometallurgiya, No. 4, 30–38 (2018).

    Google Scholar 

  6. E. P. Orlov, “Technology of the plasma deposition of heat-protective coatings. Effect of technological regimes and materials on operating characteristics of coatings,” in Proceedings of the Scientific-Technical Conference and the Scientific-Technical Seminar of Young Scientists and Specialists of the Rocket-Space Industry on “The Future of the Russian Cosmonautics in Innovation Developments of Young Specialists” (Korolev, 2014), pp. 35–41.

  7. S. A. Budinovskii, P. V. Matveev, A. A. Smirnov, and D. A. Chubarov, “Heat-protective coatings for working turbine blades made of high-temperature nickel superalloys with an external magnetron ceramic layer,” Elektrometallurgiya, No. 1, 3–10 (2019).

    Google Scholar 

  8. S. A. Budinovskii, D. A. Chubarov, P. V. Matveev, and A. A. Smirnov, “Properties of a ceramic layer of a heat-protective coating deposited by magnetron sputtering,” Elektrometallurgiya, No. 2, 27–32 (2019).

    Google Scholar 

  9. R. C. David and R. P. Simon, “Phillpot thermal barrier coating materials,” Materials Today 8 (6), 22–29 (2005).

    Google Scholar 

  10. S. A. Budinovskii, S. A. Muboyadzhyan, A. M. Gayamov, and P. V. Matveev, “Design of ion-plasma high-temperature metallic layers of heat-protective coating for cooled turbine blades,” Metalloved. Term. Obrab. Met., No. 11, 16–21 (2013).

  11. M. Gupta, N. Curry, P. Nylen, N. Markocsan, and R. Vassen, “Design of next generation thermal barrier coatings: experiments and modeling,” Surfacing Technology 220, 20–26 (2013).

    CAS  Google Scholar 

  12. N. V. Abraimov and A. Yu. Ivanova, “High-temperature coatings for high-temperature titanium alloys,” Elektrometallurgiya, No. 5, 20–30 (2017).

    Google Scholar 

  13. N. V. Abraimov, A. Yu. Ivanova, and A. G. Degtyareva “The composition and the structure of coatings on VT‑41 and VIT1 titanium alloys,” Elektrometallurgiya, No. 3, 28–33 (2018).

    Google Scholar 

  14. N. V. Abraimov and A. Yu. Ivanova, “Effect of coatings on the high-temperature strength of the VT-41 and VIT1 alloys upon isothermal oxidation,” Elektrometallurgiya, No. 2, 23–31 (2018).

    Google Scholar 

  15. N. A. Nochovnaya, V. I. Ivanov, E. B. Alekseev, and A. C. Kochetkov, “Methods of optimization of the service properties of alloys based on titanium intermetallic compounds,” Aviats. Mater. Technol., No. S, 196–206 (2012).

  16. O. N. Grebenyuk and M. V. Zimina, “Oxidation of the intermetallic Ti2AlNb-based alloy at temperatures to 800°C,” Metalloved., No. 4, 36–40 (2010).

  17. Y. Wang, J. Yan, H. Fan, and J. Wang, “Oxidation resistance and corrosion behavior of hot-drip aluminized coatings on commercial purity titanium,” Surface and Coating Technology 206, 1277–1282 (2011).

    Article  CAS  Google Scholar 

  18. J. Shi, H. Q. Li, M. Q. Wan, H. L. Wang, and X. Wang, “High-temperature oxidation and inter-diffusion behavior of electroplated Ni–Re diffusion barriers between NiCo–CrAlY coating and orthorhombic-Ti2AlNb alloy,” Corrosion Science 102, 200–208 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Abraimov.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abraimov, N.V., Zolotareva, A.Y. Effect of High-Temperature Coatings on the Reliability Characteristics of GTE Blade Elements. Russ. Metall. 2019, 1268–1274 (2019). https://doi.org/10.1134/S0036029519120024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029519120024

Keywords:

Navigation