Skip to main content
Log in

Extracting copper from copper oxide ore by a zwitterionic reagent and dissolution kinetics

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Sulfamic acid (SA), which possesses a zwitterionic structure, was applied as a leaching reagent for the first time for extracting copper from copper oxide ore. The effects of reaction time, temperature, particle size, reagent concentration, and stirring speed on this leaching were studied. The dissolution kinetics of malachite was illustrated with a three-dimensional diffusion model. A novel leaching effect of SA on malachite was eventually demonstrated. The leaching rate increased with decreasing particle size and increasing concentration, reaction temperature and stirring speed. The activation energy for SA leaching malachite was 33.23 kJ/mol. Furthermore, the effectiveness of SA as a new reagent for extracting copper from copper oxide ore was confirmed by experiment. This approach may provide a solution suitable for subsequent electrowinning. In addition, results reported herein may provide basic data that enable the leaching of other carbonate minerals of copper, zinc, cobalt and so on in an SA system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.E. Arzutug, M.M. Kocakerim, and M. Çopur, Leaching of malachite ore in NH3-saturated water, Ind. Eng. Chem. Res., 43(2004), No. 15, p. 4118.

    Article  Google Scholar 

  2. A. Künkül, A. Gülezgin, and N. Demirkiran, Investigation of the use of ammonium acetate as an alternative lixiviant in the leaching of malachite ore, Chem. Ind. Chem. Eng. Q., 19(2013), No. 1, p. 25.

    Article  Google Scholar 

  3. Ph. Muchez and M. Corbella, Factors controlling the precipitation of copper and cobalt minerals in sediment-hosted ore deposits: advances and restrictions, J. Geochem. Explor., 118(2012), p. 38.

    Article  Google Scholar 

  4. J. Peacey, X.J. Guo, and E. Robles, Copper hydrometallurgy-current status, preliminary economics, future direction and positioning versus smelting, Trans. Nonferrous Met. Soc. China, 14(2004), No. 3, p. 560.

    Google Scholar 

  5. M.M. Antonijević, M.D. Dimitrijević, Z.O. Stevanović, S.M. Serbula, and G.D. Bogdanovic, Investigation of the possibility of copper recovery from the flotation tailings by acid leaching, J. Hazard. Mater., 158(2008), No. 1, p. 23.

    Article  Google Scholar 

  6. J. Viñals, A. Roca, M.C. Hernández, and O. Benavente, Topochemical transformation of enargite into copper oxide by hypochlorite leaching, Hydrometallurgy, 68(2003), No. 1–3, p. 183.

    Article  Google Scholar 

  7. N. Habbache, N. Alane, S. Djerad, and L. Tifouti, Leaching of copper oxide with different acid solutions, Chem. Eng. J., 152(2009), No. 2–3, p. 503.

    Article  Google Scholar 

  8. E.B. Melchiorre, G.R. Huss, and A. Lopez, CO3]·H2O) and malachite (Cu2CO3(OH)2), Chem. Geol., 367(2014), p. 63.

    Article  Google Scholar 

  9. D. Bingöl and M. Canbazoğlu, Dissolution kinetics of malachite in sulphuric acid, Hydrometallurgy, 72(2004), No. 1–2, p. 159.

    Article  Google Scholar 

  10. H. Naderi, M. Abdollahy, N. Mostoufi, M.J. Koleini, S.A. Shojaosadati, and Z. Manafi, Kinetics of chemical leaching of chalcopyrite from low grade copper ore: behavior of different size fractions, Int. J. Miner. Metall. Mater., 18(2011), No. 6, p. 638.

    Article  Google Scholar 

  11. Z.X. Liu, Z.L. Yin, H.P. Hu, and Q.Y. Chen, Leaching kinetics of low-grade copper ore containing calcium-magnesium carbonate in ammonia-ammonium sulfate solution with persulfate, Trans. Nonferrous Met. Soc. China, 22(2012), No. 11, p. 2822.

    Article  Google Scholar 

  12. S. Helle and U. Kelm, Experimental leaching of atacamite, chrysocolla and malachite: relationship between copper retention and cation exchange capacity, Hydrometallurgy, 78(2005), p. 180.

    Article  Google Scholar 

  13. O.N. Ata, S. Çolak, Z. Ekinci, and M. Çopur, Determination of the optimum conditions for leaching of malachite ore in H2SO4 solutions, Chem. Eng. Technol., 24(2001), No. 4, p. 409.

    Article  Google Scholar 

  14. M. Mena and F. Olson, Leaching of chrysocolla with ammonia-ammonium carbonate solutions, Metall. Trans. B, 16(1985), No. 3, p. 441.

    Article  Google Scholar 

  15. P.D. Oudenne and F.A. Olson, Leaching kinetics of malachite in ammonium carbonate solutions, Metall. Trans. B, 14(1983), No. 1, p. 33.

    Article  Google Scholar 

  16. A. Künkül, M.M. Kocakerim, S. Yapici, and A. Demirbag, Leaching kinetics of malachite in ammonia solutions, Int. J. Miner. Process., 41(1994), No. 3-4, p. 167.

    Article  Google Scholar 

  17. X. Wang, Q.Y. Chen, H.P. Hu, Z.L. Yin, and Z.L. Xiao, Solubility prediction of malachite in aqueous ammoniacal ammonium chloride solutions at 25°C, Hydrometallurgy, 99(2009), No. 3-4, p. 231.

    Article  Google Scholar 

  18. T. Çalban, S. Çolak, and M. Yeşilyurt, Optimization of leaching of copper from oxidized copper ore in NH3-(NH4)2SO4 medium, Chem. Eng. Commun., 192(2005), No. 11, p. 1515.

    Article  Google Scholar 

  19. A. Ekmekyapar, E. Aktaş, A. Künkül, and N. Demirkiran, Investigation of leaching kinetics of copper from malachite ore in ammonium nitrate solutions, Metall. Mater. Trans. B, 43(2012), No. 4, p. 764.

    Article  Google Scholar 

  20. Y. Awakura, T. Hirato, A. Kagawa, Y. Yamada, and H. Majima, Dissolution of malachite in aqueous ethylenediaminetetraacetate solution, Metall. Trans. B, 22(1991), p. 569.

    Article  Google Scholar 

  21. D.D. Wu, S.M. Wen, J. Yang, J.S. Deng, and L. Jiang, Dissolution kinetics of malachite as an alternative copper source with an organic leach reagent, J. Chem. Eng. Jpn., 46(2013), No. 10, p. 677.

    Article  Google Scholar 

  22. S. Ameen, V. Ali, M. Zulfequar, M.M. Haq, and M. Husain, Electrical conductivity and dielectric properties of sulfamic acid doped polyaniline, Curr. Appl Phys., 7(2007), No. 2, p. 215.

    Article  Google Scholar 

  23. F.J. Xiong, D.B. Zhou, Z.P. Xie, and Y.Y. Chen, A study of the Ce3+/Ce4+ redox couple in sulfamic acid for redox battery application, Appl. Energy, 99(2012), p. 291.

    Article  Google Scholar 

  24. J.S. Yadav, P. Purushothama Rao, D. Sreenu, R. Srinivasa Rao, V. Naveen Kumar, K. Nagaiah, and A.R. Prasad, Sulfamic acid: an efficient, cost-effective and recyclable solid acid catalyst for the Friedlander quinoline synthesis, Tetrahedron Lett., 46(2005), No. 42, p. 7249.

    Article  Google Scholar 

  25. S.K. De, Sulfamic acid as a novel, efficient, cost-effective, and reusable solid acid catalyst for the synthesis of pyrroles under solvent-free conditions, Synth. Commun., 38(2008), No. 5, p. 803.

    Article  Google Scholar 

  26. R.L. Sass, A neutron diffraction study on the crystal structure of sulfamic acid, Acta Crystallogr., 13(1960), No. 4, p. 320.

    Article  Google Scholar 

  27. F.A. Kanda and A.J. King, The crystal structure of sulfamic acid, J. Am. Chem. Soc., 73(1951), No. 5, p. 2315.

    Article  Google Scholar 

  28. Q.F. Yi, Automatic generation of potential-pH diagrams for the Cu-NH3-H2O system using concentration comparison, J. Xiantan Min. Inst., 15(2000), No. 2, p. 57.

    Google Scholar 

  29. C.K. Dickinson and G.R. Heal, Solid-liquid diffusion controlled rate equations, Thermochim. Acta, 340–341(1999), p. 89.

    Article  Google Scholar 

  30. O. Levenspiel, Chemical Reaction Engineering, Wiley, New York, 1972, p. 2.

    Google Scholar 

  31. L.M. Sekhukhune, F. Ntuli, and E. Muzenda, Atmospheric oxidative and non-oxidative leaching of Ni-Cu matte by acidified ferric chloride solution, J. S. Afr. Inst. Min. Metall., 114(2014), No. 5, p. 401.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiu-shuai Deng or Dan-dan Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Js., Wen, Sm., Deng, Jy. et al. Extracting copper from copper oxide ore by a zwitterionic reagent and dissolution kinetics. Int J Miner Metall Mater 22, 241–248 (2015). https://doi.org/10.1007/s12613-015-1067-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-015-1067-1

Keywords

Navigation