Skip to main content
Log in

Associations of Blood Caffeine and Genetically Predicted Coffee Consumption with Anthropometric Measures of Obesity: A Two Sample Mendelian Randomization Study

  • Original Research
  • Published:
The journal of nutrition, health & aging

Abstract

Objectives

In observational studies, caffeine has been associated with a lower risk of obesity. However, whether the associations are causal and apply to coffee, which is a mixture of chemical compounds is unclear.

Design

Two sample Mendelian randomization study.

Setting and Participants

Genetic instruments predicting caffeine were extracted from an existing GWAS of serum metabolites in 1960 individuals of European descent. For coffee consumption up to 91,462 individuals of European ancestry with top SNPs followed-up in ∼30,062 coffee consumers and up to 375,833 individuals of European ancestry were taken from two separate studies. Genetic associations with obesity classes (n= 263,407), waist-to-hip ratio (WHR) (n=210,086), waist circumference (WC) (n= 231,355), and hip circumference (HC) (n=211,117) were obtained from summary statistics of individuals of European ancestry from the Genetic Investigation of Anthropocentric Traits (GIANT).

Methods

The inverse-variance weighted method (IVW) was used as the main analysis. We also employed the weighted median approach (WM) and MR-Egger regression as sensitivity analyses. To gauge evidence of directional pleiotropy, we used Cochrane’s Q test, and MR-PRESSO global test, as measures of heterogeneity between ratio estimates of variants.

Results

There was little evidence to support an association between blood caffeine and any anthropometric measure of obesity in the primary and sensitivity analyses. However, genetically predicted coffee consumption was positively associated with higher class I obesity and WHR. Furthermore, this association was maintained after correction for multiple testing (P < 0.05/6 = 0.008). Results from the GWAS of coffee consumption were in tandem with results from the GWMA, but associations with class I obesity and waist to hip ratio (WHR) were not maintained after correction for multiple testing.

Conclusion

We found little evidence that caffeine or coffee consumption protects against obesity, adding to growing literature suggesting that previous observational studies may have been confounded. This study demonstrates the dangers of ignoring genetic testing for targeted interventions and basing dietary policy recommendations solely on observational studies restricted to specific populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Abbreviations

GWMA:

genome wide meta-analysis

GWAS:

genome wide association study

MR:

mendelian randomization

IVs:

instrument variables

SNP:

single nucleotide polymorphism

IVW:

Inverse weighted median

WM:

weighted median

ME:

MR-Egger

WHO:

World Health Organization

BMI:

Body Mass Index

WC:

waist circumference

HC:

hip circumference

WHR:

waist to hip ratio

GIANT:

Genetic Investigation of Anthropocentric Traits

References

  1. ZHOU A., HYPPONEN E. habitual coffee intake and plasma lipid profile: evidence from uk biobank, clin nutr 2021: 40: 4404–4413. doi:https://doi.org/10.1016/j.clnu.2020.12.042

    Article  CAS  Google Scholar 

  2. MUHAMMAD H. F. L., SULISTYONINGRUM D. C., HURIYATI E., LEE Y. Y., MANAN WAN MUDA W. A. the interaction between coffee: caffeine consumption, ucp2 gene variation, and adiposity in adults-a cross-sectional study, j nutr metab 2019: 2019: 9606054. doi:https://doi.org/10.1155/2019/9606054

    Article  Google Scholar 

  3. LEE A., LIM W., KIM S., KHIL H., CHEON E., AN S. et al. coffee intake and obesity: a meta-analysis, nutrients 2019: 11. doi:https://doi.org/10.3390/nu11061274

  4. LARSEN S. C., MIKKELSEN M. L., FREDERIKSEN P., HEITMANN B. L. Habitual coffee consumption and changes in measures of adiposity: a comprehensive study of longitudinal associations, Int J Obes (Lond) 2018: 42: 880–886. doi:https://doi.org/10.1038/ijo.2017.310

    Article  CAS  Google Scholar 

  5. NORDESTGAARD A. T., THOMSEN M., NORDESTGAARD B. G. Coffee intake and risk of obesity, metabolic syndrome and type 2 diabetes: a Mendelian randomization study, Int J Epidemiol 2015: 44: 551–565. doi:https://doi.org/10.1093/ije/dyv083

    Article  Google Scholar 

  6. LEE J., KIM H. Y., KIM J. Coffee Consumption and the Risk of Obesity in Korean Women, Nutrients 2017: 9. doi:https://doi.org/10.3390/nu9121340

  7. GREENBERG J. A., AXEN K. V., SCHNOLL R., BOOZER C. N. Coffee, tea and diabetes: the role of weight loss and caffeine, Int J Obes (Lond) 2005: 29: 1121–1129. doi:https://doi.org/10.1038/sj.ijo.0802999

    Article  CAS  Google Scholar 

  8. LOPEZ-GARCIA E., VAN DAM R. M., RAJPATHAK S., WILLETT W. C., MANSON J. E., HU F. B. Changes in caffeine intake and long-term weight change in men and women, The American Journal of Clinical Nutrition 2006: 83: 674–680. doi:https://doi.org/10.1093/ajcn.83.3.674

    Article  CAS  Google Scholar 

  9. THOMAS D. R., HODGES I. D. Dietary Research on Coffee: Improving Adjustment for Confounding, Curr Dev Nutr 2019: 4: nzz142–nzz142. doi:https://doi.org/10.1093/cdn/nzz142

    Article  Google Scholar 

  10. CENSIN J. C., PETERS S. A. E., BOVIJN J., FERREIRA T., PULIT S. L., MAGI R. et al. Causal relationships between obesity and the leading causes of death in women and men, PLoS Genet 2019: 15: e1008405. doi:https://doi.org/10.1371/journal.pgen.1008405

    Article  Google Scholar 

  11. WHO. Obesity: preventing and managing the global epidemic. Report of a WHO consultation, World Health Organ Tech Rep Ser 2000: 894: i–xii, 1–253.

    Google Scholar 

  12. FREEDMAN D. S., KHAN L. K., SERDULA M. K., GALUSKA D. A., DIETZ W. H. Trends and Correlates of Class 3 Obesity in the United States From 1990 Through 2000, JAMA 2002: 288: 1758–1761. doi:https://doi.org/10.1001/jama.288.14.1758

    Article  Google Scholar 

  13. ANDREYEVA T., STURM R., RINGEL J. S. Moderate and severe obesity have large differences in health care costs, Obes Res 2004: 12: 1936–1943. doi:https://doi.org/10.1038/oby.2004.243

    Article  Google Scholar 

  14. KITAHARA C. M., FLINT A. J., BERRINGTON DE GONZALEZ A., BERNSTEIN L., BROTZMAN M., MACINNIS R. J. et al. Association between class III obesity (BMI of 40–59 kg/m2) and mortality: a pooled analysis of 20 prospective studies, PLoS Med 2014: 11: e1001673. doi:https://doi.org/10.1371/journal.pmed.1001673

    Article  Google Scholar 

  15. LONG T., HICKS M., YU H. C., BIGGS W. H., KIRKNESS E. F., MENNI C. et al. Whole-genome sequencing identifies common-to-rare variants associated with human blood metabolites, Nat Genet 2017: 49: 568–578. doi:https://doi.org/10.1038/ng.3809

    Article  CAS  Google Scholar 

  16. COFFEE, CAFFEINE GENETICS C., CORNELIS M. C., BYRNE E. M., ESKO T., NALLS M. A. et al. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption, Mol Psychiatry 2015: 20: 647–656. doi: https://doi.org/10.1038/mp.2014.107

    Article  Google Scholar 

  17. ZHONG V. W., KUANG A., DANNING R. D., KRAFT P., VAN DAM R. M., CHASMAN D. I. et al. A genome-wide association study of bitter and sweet beverage consumption, Hum Mol Genet 2019: 28: 2449–2457. doi:https://doi.org/10.1093/hmg/ddz061

    Article  CAS  Google Scholar 

  18. BURGESS S., THOMPSON S. G. Bias in causal estimates from Mendelian randomization studies with weak instruments, Statistics in Medicine 2011: 30: 1312–1323. doi:https://doi.org/10.1002/sim.4197

    Article  Google Scholar 

  19. BURGESS S., BUTTERWORTH A., THOMPSON S. G. Mendelian randomization analysis with multiple genetic variants using summarized data, Genet Epidemiol 2013: 37: 658–665. doi:https://doi.org/10.1002/gepi.21758

    Article  Google Scholar 

  20. BOWDEN J., DAVEY SMITH G., HAYCOCK P. C., BURGESS S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator, Genet Epidemiol 2016: 40: 304–314. doi:https://doi.org/10.1002/gepi.21965

    Article  Google Scholar 

  21. BURGESS S., THOMPSON S. G. Interpreting findings from Mendelian randomization using the MR-Egger method, Eur J Epidemiol 2017: 32: 377–389. doi:https://doi.org/10.1007/s10654-017-0255-x

    Article  Google Scholar 

  22. BOWDEN J., DEL GRECO M. F., MINELLI C., ZHAO Q., LAWLOR D. A., SHEEHAN N. A. et al. Improving the accuracy of two-sample summary-data Mendelian randomization: moving beyond the NOME assumption, Int J Epidemiol 2019: 48: 728–742. doi:https://doi.org/10.1093/ije/dyy258

    Article  Google Scholar 

  23. VERBANCK M., CHEN C. Y., NEALE B., DO R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases, Nat Genet 2018: 50: 693–698. doi:https://doi.org/10.1038/s41588-018-0099-7

    Article  CAS  Google Scholar 

  24. HEMANI G., ZHENG J., ELSWORTH B., WADE K. H., HABERLAND V., BAIRD D. et al. The MR-Base platform supports systematic causal inference across the human phenome, Elife 2018: 7. doi:https://doi.org/10.7554/eLife.34408

  25. PIRASTU N., KOOYMAN M., ROBINO A., VAN DER SPEK A., NAVARINI L., AMIN N. et al. Non-additive genome-wide association scan reveals a new gene associated with habitual coffee consumption, Sci Rep 2016: 6: 31590. doi:https://doi.org/10.1038/srep31590

    Article  CAS  Google Scholar 

  26. MCMAHON G., TAYLOR A. E., DAVEY SMITH G., MUNAFO M. R. Phenotype refinement strengthens the association of AHR and CYP1A1 genotype with caffeine consumption, PLoS One 2014: 9: e103448. doi:https://doi.org/10.1371/journal.pone.0103448

    Article  Google Scholar 

  27. ANTY R., MARJOUX S., IANNELLI A., PATOURAUX S., SCHNECK A. S., BONNAFOUS S. et al. Regular coffee but not espresso drinking is protective against fibrosis in a cohort mainly composed of morbidly obese European women with NAFLD undergoing bariatric surgery, J Hepatol 2012: 57: 1090–1096. doi:https://doi.org/10.1016/j.jhep.2012.07.014

    Article  CAS  Google Scholar 

  28. KIM H. J., CHO S., JACOBS D. R., JR., PARK K. Instant coffee consumption may be associated with higher risk of metabolic syndrome in Korean adults, Diabetes Res Clin Pract 2014: 106: 145–153. doi:https://doi.org/10.1016/j.diabres.2014.07.007

    Article  CAS  Google Scholar 

  29. KWOK M. K., LEUNG G. M., SCHOOLING C. M. Habitual coffee consumption and risk of type 2 diabetes, ischemic heart disease, depression and Alzheimer’s disease: a Mendelian randomization study, Sci Rep 2016: 6: 36500. doi:https://doi.org/10.1038/srep36500

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

V.P.N conducted data analysis and drafted the manuscript. V.P.N and S.Y. Y interpreted findings and critically reviewed the manuscript.

Corresponding author

Correspondence to Vikram P. Narayan.

Additional information

Conflict of Interest Statement

The authors declare no conflict of interest.

Electronic Supplementary Maerial

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayan, V.P., Yoon, S.Y. Associations of Blood Caffeine and Genetically Predicted Coffee Consumption with Anthropometric Measures of Obesity: A Two Sample Mendelian Randomization Study. J Nutr Health Aging 26, 190–196 (2022). https://doi.org/10.1007/s12603-022-1736-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-022-1736-5

Key words

Navigation