Skip to main content
Log in

Uric Acid Variability and All-Cause Mortality: A Prospective Cohort Study in Northern China

  • Original Research
  • Published:
The journal of nutrition, health & aging

Abstract

Objectives

Uric acid(UA) is related with cardiovascular disease, but the association of UA variability with all-cause mortality is rarely known. This study aimed to investigate the relationship between UA variability and all-cause mortality in Kailuan cohort study in northern China.

Design

Cohort study.

Setting

Kailuan community hospitals in Tangshan, Hebei province, Northern China.

Participants

A total of 55717 participants from Kailuan Study were enrolled, and our study followed up biennially from 2006 to 2010.

Measurements

Clinical records of the participants enrolled were analyzed. UA variation independent of mean (UAVIM) values were calculated and all the participants were quartile grouped into four groups as: Q1(UAVIM<0.68), Q2(0.68≤UAVIM<1.10), Q3(1.10≤UAVIM<1.67) and Q4(UAVIM≥1.67). The endpoint event was all-cause death. Cox regression model was performed to evaluate the hazard ratios(HRs) of all-cause mortality based on UAVIM groups.

Results

During a median follow-up of 6.83 years, 2926 deaths occurred. The accumulated mortality rates were 4.6%, 4.8%, 5.4% and 6.1% in group Q1, Q2, Q3 and Q4 respectively. When adjusted potential confounders, the highest risk for all-cause mortality was in group Q4 and the adjusted HRs and 95% confidence intervals(CIs) of group Q2–Q4 for all-cause death were 1.044(0.937, 1.164), 1.182(1.064, 1.314) and 1.353(1.220, 1.501) compared with group Q1, respectively. Further analysis showed that the risk for all-cause death increased as UAVIM value increased. Sensitive analysis still showed the similar results when excluding participants with hyperuricemia or severe chronic kidney diseases. Sub-group analysis by age, gender, BMI or hypertension history also indicated analogous results.

Conclusion

Elevated UAVIM was related with increased all-cause mortality and UAVIM was an independent risk factor for all-cause mortality in the community cohort study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Johnson RJ, Bakris GL, Borghi C, et al. Hyperuricemia, Acute and Chronic Kidney Disease, Hypertension, and Cardiovascular Disease: Report of a Scientific Workshop Organized by the National Kidney Foundation. Am J Kidney Dis. 2018;71(6):851–865. doi:https://doi.org/10.1053/j.ajkd.2017.12.009.

    Article  Google Scholar 

  2. Maruhashi T, Hisatome I, Kihara Y, Higashi Y. Hyperuricemia and endothelial function: From molecular background to clinical perspectives. Atherosclerosis. 2018;278:226–231.doi:https://doi.org/10.1016/j.atherosclerosis.2018.10.007.

    Article  CAS  Google Scholar 

  3. Qin T, Zhou X, Wang J, et al. Hyperuricemia and the Prognosis of Hypertensive Patients: A Systematic Review and Meta-Analysis. J Clin Hypertens (Greenwich). 2016;18(12):1268–1278.doi:https://doi.org/10.1111/jch.12855.

    Article  Google Scholar 

  4. Juraschek SP, McAdams-Demarco M, Miller ER, et al. Temporal relationship between uric acid concentration and risk of diabetes in a community-based study population. Am J Epidemiol. 2014;179(6):684–691.doi:https://doi.org/10.1093/aje/kwt320.

    Article  Google Scholar 

  5. Kuwabara M, Borghi C, Cicero AFG, et al. Elevated serum uric acid increases risks for developing high LDL cholesterol and hypertriglyceridemia: A five-year cohort study in Japan. Int J Cardiol. 2018;261:183–188.doi:https://doi.org/10.1016/j.ijcard.2018.03.045.

    Article  Google Scholar 

  6. Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008;359(17):1811–1821.doi:https://doi.org/10.1056/NEJMra0800885.

    Article  CAS  Google Scholar 

  7. Meisinger C, Koenig W, Baumert J, Doring A. Uric acid levels are associated with all-cause and cardiovascular disease mortality independent of systemic inflammation in men from the general population: the MONICA/KORA cohort study. Arterioscler Thromb Vasc Biol. 2008;28(6):1186–1192.doi:https://doi.org/10.1161/ATVBAHA.107.160184.

    Article  CAS  Google Scholar 

  8. Konta T, Ichikawa K, Kawasaki R, et al. Association between serum uric acid levels and mortality: a nationwide community-based cohort study. Sci Rep. 2020;10(1):6066. doi:https://doi.org/10.1038/s41598-020-63134-0.

    Article  CAS  Google Scholar 

  9. Kleber ME, Delgado G, Grammer TB, et al. Uric Acid and Cardiovascular Events: A Mendelian Randomization Study. J Am Soc Nephrol. 2015;26(11):2831–2838. doi:https://doi.org/10.1681/ASN.2014070660.

    Article  CAS  Google Scholar 

  10. Tscharre M, Herman R, Rohla M, et al. Uric acid is associated with long-term adverse cardiovascular outcomes in patients with acute coronary syndrome undergoing percutaneous coronary intervention. Atherosclerosis. 2018;270:173–179.doi:https://doi.org/10.1016/j.atherosclerosis.2018.02.003.

    Article  CAS  Google Scholar 

  11. Xia X, Luo Q, Li B, Lin Z, Yu X, Huang F. Serum uric acid and mortality in chronic kidney disease: A systematic review and meta-analysis. Metabolism. 2016;65(9):1326–1341.doi:https://doi.org/10.1016/j.metabol.2016.05.009.

    Article  CAS  Google Scholar 

  12. Cho SK, Chang Y, Kim I, Ryu S. U-Shaped Association Between Serum Uric Acid Level and Risk of Mortality: A Cohort Study. Arthritis Rheumatol. 2018;70(7):1122–1132.doi:https://doi.org/10.1002/art.40472.

    Article  CAS  Google Scholar 

  13. Hu L, Hu G, Xu BP, et al. U-Shaped Association of Serum Uric Acid With All-Cause and Cause-Specific Mortality in US Adults: A Cohort Study. J Clin Endocrinol Metab. 2020;105(1).doi:https://doi.org/10.1210/clinem/dgz068.

  14. Cheong E, Ryu S, Lee JY, et al. Association between serum uric acid and cardiovascular mortality and all-cause mortality: a cohort study. J Hypertens. 2017;35 Suppl 1:S3–S9.doi:https://doi.org/10.1097/HJH.0000000000001330.

    Article  CAS  Google Scholar 

  15. Grossman C, Grossman E, Goldbourt U. Uric acid variability at midlife as an independent predictor of coronary heart disease and all-cause mortality. PLoS One. 2019;14(8):e0220532.doi:https://doi.org/10.1371/journal.pone.0220532.

    Article  CAS  Google Scholar 

  16. Loeffler LF, Navas-Acien A, Brady TM, Miller ER, 3rd, Fadrowski JJ. Uric acid level and elevated blood pressure in US adolescents: National Health and Nutrition Examination Survey, 1999–2006. Hypertension. 2012;59(4):811–817.doi:https://doi.org/10.1161/HYPERTENSIONAHA.111.183244.

    Article  CAS  Google Scholar 

  17. Cagli K, Turak O, Canpolat U, et al. Association of Serum Uric Acid Level With Blood Pressure Variability in Newly Diagnosed Essential Hypertension. J Clin Hypertens (Greenwich). 2015;17(12):929–935.doi:https://doi.org/10.1111/jch.12641.

    Article  CAS  Google Scholar 

  18. Stevens SL, Wood S, Koshiaris C, et al. Blood pressure variability and cardiovascular disease: systematic review and meta-analysis. BMJ. 2016;354:i4098.doi:https://doi.org/10.1136/bmj.i4098.

    Article  Google Scholar 

  19. Wang J, Shi X, Ma C, et al. Visit-to-visit blood pressure variability is a risk factor for all-cause mortality and cardiovascular disease: a systematic review and meta-analysis. J Hypertens. 2017;35(1):10–17.doi:https://doi.org/10.1097/HJH.0000000000001159.

    Article  CAS  Google Scholar 

  20. Wu S, Li Y, Jin C, et al. Intra-individual variability of high-sensitivity C-reactive protein in Chinese general population. Int J Cardiol. 2012;157(1):75–79.doi:https://doi.org/10.1016/j.ijcard.2010.12.019.

    Article  CAS  Google Scholar 

  21. Wu Z, Jin C, Vaidya A, et al. Longitudinal Patterns of Blood Pressure, Incident Cardiovascular Events, and All-Cause Mortality in Normotensive Diabetic People. Hypertension. 2016;68(1):71–77.doi:https://doi.org/10.1161/HYPERTENSIONAHA.116.07381.

    Article  CAS  Google Scholar 

  22. Wang G, Li N, Chang S, et al. A prospective follow-up study of the relationship between C-reactive protein and human cancer risk in the Chinese Kailuan Female Cohort. Cancer Epidemiol Biomarkers Prev. 2015;24(2):459–465.doi:https://doi.org/10.1158/1055-9965.EPI-14-1112.

    Article  CAS  Google Scholar 

  23. Rognant N, Lemoine S, Laville M, Hadj-Aissa A, Dubourg L. Performance of the chronic kidney disease epidemiology collaboration equation to estimate glomerular filtration rate in diabetic patients. Diabetes Care. 2011;34(6):1320–1322.doi:https://doi.org/10.2337/dc11-0203.

    Article  Google Scholar 

  24. Asayama K, Kikuya M, Schutte R, et al. Home blood pressure variability as cardiovascular risk factor in the population of Ohasama. Hypertension. 2013;61(1):61–69.doi:https://doi.org/10.1161/HYPERTENSIONAHA.111.00138.

    Article  CAS  Google Scholar 

  25. Fukuda K, Kai H, Kamouchi M, et al. Day-by-Day Blood Pressure Variability and Functional Outcome After Acute Ischemic Stroke: Fukuoka Stroke Registry. Stroke. 2015;46(7):1832–1839.doi:https://doi.org/10.1161/STROKEAHA.115.009076.

    Article  Google Scholar 

  26. Multidisciplinary Expert Task Force on H, Related D. Chinese Multidisciplinary Expert Consensus on the Diagnosis and Treatment of Hyperuricemia and Related Diseases. Chin Med J (Engl). 2017;130(20):2473–2488.doi:https://doi.org/10.4103/0366-6999.216416.

    Article  Google Scholar 

  27. Brombo G, Bonetti F, Volpato S, et al. Uric acid within the “normal” range predict 9-year cardiovascular mortality in older individuals. The InCHIANTI study. Nutr Metab Cardiovasc Dis. 2019;29(10):1061–1067.doi:https://doi.org/10.1016/j.numecd.2019.06.018.

    Article  CAS  Google Scholar 

  28. Virdis A, Masi S, Casiglia E, et al. Identification of the Uric Acid Thresholds Predicting an Increased Total and Cardiovascular Mortality Over 20 Years. Hypertension. 2020;75(2):302–308.doi:https://doi.org/10.1161/HYPERTENSIONAHA.119.13643.

    Article  CAS  Google Scholar 

  29. Hoieggen A, Alderman MH, Kjeldsen SE, et al. The impact of serum uric acid on cardiovascular outcomes in the LIFE study. Kidney Int. 2004;65(3):1041–1049. doi:https://doi.org/10.1111/j.1523-1755.2004.00484.x.

    Article  CAS  Google Scholar 

  30. Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V. Regulation of uric acid metabolism and excretion. Int J Cardiol. 2016;213:8–14.doi:https://doi.org/10.1016/j.ijcard.2015.08.109.

    Article  Google Scholar 

  31. Dong ZX, Tian M, Li H, et al. Association of Serum Uric Acid Concentration and Its Change with Cardiovascular Death and All-Cause Mortality. Dis Markers. 2020;2020:7646384.doi:https://doi.org/10.1155/2020/7646384.

    PubMed  PubMed Central  Google Scholar 

  32. Lim SS, Yang YL, Chen SC, et al. Association of variability in uric acid and future clinical outcomes of patient with coronary artery disease undergoing percutaneous coronary intervention. Atherosclerosis. 2020;297:40–46.doi:https://doi.org/10.1016/j.atherosclerosis.2020.01.025.

    Article  CAS  Google Scholar 

  33. Krzystek-Korpacka M, Patryn E, Kustrzeba-Wojcicka I, Chrzanowska J, Gamian A, Noczynska A. Gender-specific association of serum uric acid with metabolic syndrome and its components in juvenile obesity. Clin Chem Lab Med. 2011;49(1):129–136. doi:https://doi.org/10.1515/CCLM.2011.011.

    Article  CAS  Google Scholar 

  34. McGorrian C, Yusuf S, Islam S, et al. Estimating modifiable coronary heart disease risk in multiple regions of the world: the INTERHEART Modifiable Risk Score. Eur Heart J. 2011;32(5):581–589.doi:https://doi.org/10.1093/eurheartj/ehq448.

    Article  Google Scholar 

  35. Daiber A, Steven S, Weber A, et al. Targeting vascular (endothelial) dysfunction. Br J Pharmacol. 2017;174(12):1591–1619.doi:https://doi.org/10.1111/bph.13517.

    Article  CAS  Google Scholar 

  36. Rizzo P, Miele L, Ferrari R. The Notch pathway: a crossroad between the life and death of the endothelium. Eur Heart J. 2013;34(32):2504–2509.doi:https://doi.org/10.1093/eurheartj/ehs141.

    Article  Google Scholar 

  37. Esche J, Krupp D, Mensink GBM, Remer T. Dietary Potential Renal Acid Load Is Positively Associated with Serum Uric Acid and Odds of Hyperuricemia in the German Adult Population. J Nutr. 2018;148(1):49–55.doi:https://doi.org/10.1093/jn/nxx003.

    Article  Google Scholar 

  38. Dolan E, O’Brien E. Blood pressure variability: clarity for clinical practice. Hypertension. 2010;56(2):179–181.doi:https://doi.org/10.1161/HYPERTENSIONAHA.110.154708.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The study was supported by the National Natural Science Foundation of China (No 8207020241). The authors thank all the contributions the staff of Kailuan Community Hospitals made to this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shouling Wu or Hao Xue.

Ethics declarations

Conflict of interest: There was no conflict of interest to declare.

Ethical Standards: The Ethics Committee of the Kailuan hospital approved the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Wang, C., Zhao, M. et al. Uric Acid Variability and All-Cause Mortality: A Prospective Cohort Study in Northern China. J Nutr Health Aging 25, 1235–1240 (2021). https://doi.org/10.1007/s12603-021-1706-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-021-1706-3

Key words

Navigation