Skip to main content

Advertisement

Log in

Probiotics, Live Biotherapeutic Products (LBPs), and Gut-Brain Axis Related Psychological Conditions: Implications for Research and Dietetics

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

It is well-known that probiotics have key roles in the crosstalk between the gut and brain in terms of nutrition and health. However, when investigating their role in nutrition and health, it can be important to discriminate probiotics used as foods, food supplements, or drugs. For clarification of this terminology, the Food and Drug Administration (FDA) has established a new “live biotherapeutic products” (LBP) category, expressing pharmaceutical expectations and to reduce confusion in the literature. Growing evidence advises that the community of microorganisms found in the gut microbiota is associated with psychological conditions. Hence, it is thought that LBPs may positively affect depression, anxiety, bipolar disorder, and schizophrenia by reducing inflammation, improving gut microbiota, and balancing gut neurometabolites. This review focuses on the specific position of probiotics as LBPs in psychological conditions. Condition-specific potential pathways and mechanisms of LBPs and the prominent strains are discussed in the light of novel studies for future research, dietetic and pharmaceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. El-Sayed A, Aleya L, Kamel M (2021) Microbiota’s role in health and diseases. Environ Sci Pollut Res Int 28:36967–36983

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gomaa EZ (2020) Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek 113:2019–2040

    Article  PubMed  Google Scholar 

  3. Misiak B, Łoniewski I, Marlicz W et al (2020) The HPA axis dysregulation in severe mental illness: can we shift the blame to gut microbiota? Prog Neuropsychopharmacol Biol Psychiatry 102:109951

    Article  CAS  PubMed  Google Scholar 

  4. Liang S, Wu X, Hu X, Wang T, Jin F (2018) Recognizing depression from the microbiotagutbrain axis. Int J Mol Sci 19:1592

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cryan JF, O’Riordan KJ, Cowan CSM et al (2019) The microbiota-gut-brain axis. Physiol Rev 99:1877–2013

    Article  CAS  PubMed  Google Scholar 

  6. Azad MAK, Sarker M, Li T, Yin J (2018) Probiotic species in the modulation of gut microbiota: an overview. Biomed Res Int 2018:9478630–9478630

    Article  PubMed  PubMed Central  Google Scholar 

  7. Report FAO/WHO (2001) Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria [Internet]. 1–29. [Available from: https://www.fao.org/3/y6398e/y6398e.pdf

  8. Zawistowska-Rojek A, Tyski S (2018) Are probiotic really safe for humans? Pol J Microbiol 67:251–258

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cordaillat-Simmons M, Rouanet A, Pot B (2020) Live biotherapeutic products: the importance of a defined regulatory framework. Exp Mol Med 52:1397–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. U.S. Food and Drug Administration (FDA) (2016) Early clinical trials with live biotherapeutic products: chemistry, manufacturing, and control information (FDA, Washington, DC, 2016). [Available from: https://www.fda.gov/files/vaccines,%20blood%20&%20biologics/published/Early-Clinical-Trials-With-Live-Biotherapeutic-Products--Chemistry--Manufacturing--and-Control-Information--Guidance-for-Industry.pdf

  11. Pharmacopoeia E (2019) 3053E General monograph on live biotherapeutic products. European Pharmacopoeia 9.7

  12. Tette FM, Kwofie SK, Wilson MD (2022) Therapeutic anti-depressant potential of microbial GABA produced by Lactobacillus rhamnosus strains for gabaergic signaling restoration and inhibition of addiction-induced HPA Axis Hyperactivity. Curr Issues Mol Biol 44:1434–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Murray E, Sharma R, Smith KB et al (2019) Probiotic consumption during puberty mitigates LPS-induced immune responses and protects against stress-induced depression- and anxiety-like behaviors in adulthood in a sex-specific manner. Brain Behav Immun 81:198–212

    Article  CAS  PubMed  Google Scholar 

  14. World Health Organization (WHO) (2017) Depression and other common mental disorders: global health estimates. Geneva, Switzerland: World Health Organization; 2017. Report No; WHO/MSD/MER: 2017. Geneva Switzerland

  15. National Research Council (US) and Institute of Medicine (US) Committee on Depression, Parenting Practices, and the Healthy Development of Children (2009) In: England MJ, Sim LJ, editors. Depression in parents, parenting, and children: opportunities to improve identification, treatment, and prevention. National Academies Press (US) Copyright 2009 by the National Academy of Sciences. All rights reserved., Washington (DC), PMID: 25009931

  16. Ijaz S, Davies P, Williams CJ, Kessler D, Lewis G, Wiles N (2018) Psychological therapies for treatment‐resistant depression in adults. Cochrane database of systematic reviews, 5

  17. Schuch FB, Stubbs B (2019) The role of exercise in preventing and treating depression. Curr Sports Med Rep 18(8):299–304

    Article  PubMed  Google Scholar 

  18. Donoso F, Cryan JF, Olavarría-Ramírez L, Nolan YM, Clarke G (2023) Inflammation, lifestyle factors, and the microbiome-gut-brain axis: relevance to depression and antidepressant action. Clin Pharmacol Ther 113(2):246–259

    Article  PubMed  Google Scholar 

  19. Huang F, Wu X (2021) Brain neurotransmitter modulation by gut microbiota in anxiety and depression. Front Cell Dev Biol 9:649103

  20. Cuijpers P, Stringaris A, Wolpert M (2020) Treatment outcomes for depression: challenges and opportunities. Lancet Psychiatry 7:925–927

    Article  PubMed  Google Scholar 

  21. Yokoya S, Maeno T, Sakamoto N, Goto R, Maeno T (2018) A brief survey of public knowledge and stigma towards depression. J Clin Med Res 10:202

    Article  PubMed  PubMed Central  Google Scholar 

  22. Haller H, Anheyer D, Cramer H, Dobos G (2019) Complementary therapies for clinical depression: an overview of systematic reviews. BMJ Open 9:e028527

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jiang H, Ling Z, Zhang Y et al (2015) Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 48:186–194

    Article  PubMed  Google Scholar 

  24. Naseribafrouei A, Hestad K, Avershina E et al (2014) Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil 26:1155–1162

    Article  CAS  PubMed  Google Scholar 

  25. Du Y, Gao X-R, Peng L, Ge J-F (2020) Crosstalk between the microbiota-gut-brain axis and depression. Heliyon 6:e04097

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mörkl S, Butler MI, Holl A, Cryan JF, Dinan TG (2020) Probiotics and the microbiota-gut-brain axis: focus on psychiatry. Curr Nutr Rep 9:171–182

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bharwani A, Bala A, Surette M, Bienenstock J, Vigod SN, Taylor VH (2020) Gut microbiome patterns associated with treatment response in patients with major depressive disorder: Changements du microbiote intestinal associés à la réponse au traitement chez des patients souffrant de trouble dépressif majeur. Can J Psychiatry 65:278–280

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dong Z, Shen X, Hao Y et al (2022) Gut microbiome: a potential indicator for predicting treatment outcomes in major depressive disorder. Front Neurosci 16

  29. Hollander D, Kaunitz JD (2020) The “Leaky Gut”: tight junctions but loose associations? : Springer. 1277–1287

  30. Chahwan B, Kwan S, Isik A, van Hemert S, Burke C, Roberts L (2019) Gut feelings: a randomised, triple-blind, placebo-controlled trial of probiotics for depressive symptoms. J Affect Disord 253:317–326

    Article  PubMed  Google Scholar 

  31. Richard DM, Dawes MA, Mathias CW, Acheson A, Hill-Kapturczak N, Dougherty DM (2009) L-tryptophan: basic metabolic functions, behavioral research and therapeutic indications. Int J Tryptophan Res 2:IJTR. S2129

  32. Dehhaghi M, Kazemi Shariat Panahi H, Guillemin GJ (2019) Microorganisms, tryptophan metabolism, and kynurenine pathway: a complex interconnected loop influencing human health status. Int J Tryptophan Res 12:1178646919852996

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gao K, Mu C-l, Farzi A, Zhu W-y (2020) Tryptophan metabolism: a link between the gut microbiota and brain. Adv Nutr 11:709–723

    Article  PubMed  Google Scholar 

  34. Williams BB, Van Benschoten AH, Cimermancic P et al (2014) Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 16:495–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gostner JM, Geisler S, Stonig M, Mair L, Sperner-Unterweger B, Fuchs D (2020) Tryptophan metabolism and related pathways in psychoneuroimmunology: the impact of nutrition and lifestyle. Neuropsychobiology 79:89–99

    Article  CAS  PubMed  Google Scholar 

  36. Mithaiwala MN, Santana-Coelho D, Porter GA, O’Conner JC (2021) Neuroinflammation and the kynurenine pathway in CNS disease: molecular mechanisms and therapeutic implications. Cells 10(6):1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rudzki L, Ostrowska L, Pawlak D et al (2019) Probiotic Lactobacillus Plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: a double-blind, randomized, placebo controlled study. Psychoneuroendocrinology 100:213–222

    Article  CAS  PubMed  Google Scholar 

  38. Miyaoka T, Kanayama M, Wake R et al (2018) Clostridium butyricum MIYAIRI 588 as adjunctive therapy for treatment-resistant major depressive disorder: a prospective open-label trial. Clin Neuropharmacol 41:151–155

    Article  CAS  PubMed  Google Scholar 

  39. Kim C-S, Cha L, Sim M et al (2021) Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: a randomized, double-blind, placebo-controlled, multicenter trial. J Gerontol A 76:32–40

    Article  CAS  Google Scholar 

  40. Kazemi A, Noorbala AA, Azam K, Eskandari MH, Djafarian K (2019) Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: a randomized clinical trial. Clin Nutr 38:522–528

    Article  CAS  PubMed  Google Scholar 

  41. Chen H-M, Kuo P-H, Hsu C-Y et al (2021) Psychophysiological effects of Lactobacillus plantarum PS128 in patients with major depressive disorder: a preliminary 8-week open trial. Nutrients 13:3731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tian P, O’Riordan KJ, Lee Y-k et al (2020) Towards a psychobiotic therapy for depression: Bifidobacterium breve CCFM1025 reverses chronic stress-induced depressive symptoms and gut microbial abnormalities in mice. Neurobiology of stress 12:100216

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tian P, Wang G, Zhao J, Zhang H, Chen W (2019) Bifidobacterium with the role of 5-hydroxytryptophan synthesis regulation alleviates the symptom of depression and related microbiota dysbiosis. J Nutr Biochem:43–51

  44. Siegel MP, Conklin SM (2020) Acute intake of B. longum probiotic does not reduce stress, anxiety, or depression in young adults: a pilot study. Brain, Behavior, & Immunity-Health 2:100029

  45. Dao VH, Hoang LB, Trinh TO, Tran TTT, Dao VL (2021) Psychobiotics for patients with chronic gastrointestinal disorders having anxiety or depression symptoms. J Multidiscip Healthc 14:1395

    Article  PubMed  PubMed Central  Google Scholar 

  46. Eskandarzadeh S, Effatpanah M, Khosravi-Darani K et al (2021) Efficacy of a multispecies probiotic as adjunctive therapy in generalized anxiety disorder: a double blind, randomized, placebo-controlled trial. Nutr Neurosci 24:102–108

    Article  CAS  PubMed  Google Scholar 

  47. Nishida K, Sawada D, Kuwano Y, Tanaka H, Rokutan K (2019) Health benefits of Lactobacillus gasseri CP2305 tablets in young adults exposed to chronic stress: a randomized, double-blind, placebo-controlled study. Nutrients 11:1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Otaka M, Kikuchi-Hayakawa H, Ogura J et al (2021) Effect of Lacticaseibacillus paracasei strain shirota on improvement in depressive symptoms, and its association with abundance of actinobacteria in gut microbiota. Microorganisms 9:1026

    Article  PubMed  PubMed Central  Google Scholar 

  49. Reininghaus EZ, Wetzlmair L-C, Fellendorf FT et al (2020) Probiotic treatment in individuals with euthymic bipolar disorder: a pilot-study on clinical changes and compliance. Neuropsychobiology 79:71–79

    Article  CAS  PubMed  Google Scholar 

  50. Shahrbabaki ME, Sabouri S, Sabahi A et al (2020) The efficacy of probiotics for treatment of bipolar disorder-type 1: a randomized, double-blind, placebo controlled trial. Iran J Psychiatry 15:10

    Google Scholar 

  51. Reininghaus EZ, Wetzlmair L-C, Fellendorf FT et al (2020) The impact of probiotic supplements on cognitive parameters in euthymic individuals with bipolar disorder: a pilot study. Neuropsychobiology 79:63–70

    Article  CAS  Google Scholar 

  52. Dickerson F, Adamos M, Katsafanas E et al (2018) Adjunctive probiotic microorganisms to prevent rehospitalization in patients with acute mania: a randomized controlled trial. Bipolar Disord 20:614–621

    Article  CAS  PubMed  Google Scholar 

  53. Severance EG, Gressitt KL, Stallings CR et al (2017) Probiotic normalization of Candida albicans in schizophrenia: a randomized, placebo-controlled, longitudinal pilot study. Brain Behav Immun 62:41–45

    Article  PubMed  Google Scholar 

  54. Yamamura R, Okubo R, Katsumata N et al (2021) Lipid and energy metabolism of the gut microbiota is associated with the response to probiotic Bifidobacterium breve strain for anxiety and depressive symptoms in schizophrenia. Journal of Personalized Medicine 11:987

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kambe J, Watcharin S, Makioka-Itaya Y et al (2020) Heat-killed Enterococcus fecalis (EC-12) supplement alters the expression of neurotransmitter receptor genes in the prefrontal cortex and alleviates anxiety-like behavior in mice. Neurosci Lett 720:134753

    Article  CAS  PubMed  Google Scholar 

  56. American Psychiatric Association (APA) (2013) Diagnostic and statistical manual of mental health disorders, (DSM-5). American Psychiatric Publishing Washington, DC

  57. Bandelow B, Michaelis S, Wedekind D (2017) Treatment of anxiety disorders. Dialogues Clin Neurosci 19:93

    Article  PubMed  PubMed Central  Google Scholar 

  58. Faravelli C, Lo Sauro C, Godini L et al (2012) Childhood stressful events, HPA axis and anxiety disorders. World J Psychiatry 2:13–25

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dinan TG, Cryan JF (2012) Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology 37:1369–1378

    Article  CAS  PubMed  Google Scholar 

  60. Frankiensztajn LM, Elliott E, Koren O (2020) The microbiota and the hypothalamus-pituitary-adrenocortical (HPA) axis, implications for anxiety and stress disorders. Curr Opin Neurobiol 62:76–82

    Article  CAS  PubMed  Google Scholar 

  61. Jiang H-Y, Zhang X, Yu Z-H et al (2018) Altered gut microbiota profile in patients with generalized anxiety disorder. J Psychiatr Res 104:130–136

    Article  PubMed  Google Scholar 

  62. Chen Y-h, Bai J, Wu D et al (2019) Association between fecal microbiota and generalized anxiety disorder: severity and early treatment response. J Affect Disord 259:56–66

    Article  CAS  PubMed  Google Scholar 

  63. Fülling C, Dinan TG, Cryan JF (2019) Gut microbe to brain signaling: what happens in vagus…. Neuron 101:998–1002

    Article  PubMed  Google Scholar 

  64. Goehler LE, Gaykema RP, Opitz N, Reddaway R, Badr N, Lyte M (2005) Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun 19:334–344

    Article  PubMed  Google Scholar 

  65. Peirce JM, Alviña K (2019) The role of inflammation and the gut microbiome in depression and anxiety. J Neurosci Res 97:1223–1241

    Article  CAS  PubMed  Google Scholar 

  66. Silva YP, Bernardi A, Frozza RL (2020) The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol 11:25

    Article  Google Scholar 

  67. Salazar A, Gonzalez-Rivera BL, Redus L, Parrott JM, O’Connor JC (2012) Indoleamine 2, 3-dioxygenase mediates anhedonia and anxiety-like behaviors caused by peripheral lipopolysaccharide immune challenge. Horm Behav 62:202–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sudo N, Chida Y, Aiba Y et al (2004) Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol 558(1):263–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zijlmans MA, Korpela K, Riksen-Walraven JM, de Vos WM, de Weerth C (2015) Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology 53:233–245

    Article  PubMed  Google Scholar 

  70. de Punder K (2015) Pruimboom L (2015) Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability. Front Immunol 6:223

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hou R, Garner M, Holmes C et al (2017) Peripheral inflammatory cytokines and immune balance in generalised anxiety disorder: case-controlled study. Brain Behav Immun 62:212–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bear T, Dalziel J, Coad J, Roy N, Butts C, Gopal P (2021) The microbiome-gut-brain axis and resilience to developing anxiety or depression under stress. Microorganisms 9:723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Reigstad CS, Salmonson CE, Rainey JF 3rd et al (2015) Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. Faseb j 29:1395–1403

    Article  CAS  PubMed  Google Scholar 

  74. Fukumoto S, Tatewaki M, Yamada T et al (2003) Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am J Physiol Regul Integr Comp Physiol 284:R1269–R1276

    Article  CAS  PubMed  Google Scholar 

  75. Frost G, Sleeth ML, Sahuri-Arisoylu M et al (2014) The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 5:3611

    Article  CAS  PubMed  Google Scholar 

  76. Nankova BB, Agarwal R, MacFabe DF, La Gamma EF (2014) Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells–possible relevance to autism spectrum disorders. PLoS ONE 9:e103740

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lee HJ, Son Y, Lee M et al (2019) Sodium butyrate prevents radiation-induced cognitive impairment by restoring pCREB/BDNF expression. Neural Regen Res 14(9):1530–1535

    Article  PubMed  PubMed Central  Google Scholar 

  78. Barichello T, Generoso JS, Simões LR et al (2015) Sodium butyrate prevents memory impairment by re-establishing BDNF and GDNF expression in experimental pneumococcal meningitis. Mol Neurobiol 52(1):734–740

    Article  CAS  PubMed  Google Scholar 

  79. Jaworska J, Zalewska T, Sypecka J, Ziemka-Nalecz M (2019) Effect of the HDAC inhibitor, sodium butyrate, on neurogenesis in a rat model of neonatal hypoxia-ischemia: potential mechanism of action. Mol Neurobiol 56(9):6341–6370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Begum N, Mandhare A, Tryphena KP et al (2022) Epigenetics in depression and gut-brain axis: A molecular crosstalk. Front Aging Neurosci 14:1048333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Soliman ML, Rosenberger TA (2011) Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression. Mol Cell Biochem 352:173–180

    Article  CAS  PubMed  Google Scholar 

  82. Chang PV, Hao L, Offermanns S, Medzhitov R (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 111:2247–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wippermann A, Rupp O, Brinkrolf K, Hoffrogge R, Noll T (2017) Integrative analysis of DNA methylation and gene expression in butyrate-treated CHO cells. J Biotechnol 257:150–161

    Article  CAS  PubMed  Google Scholar 

  84. Persaud NS, Cates HM (2022) The epigenetics of anxiety pathophysiology: a DNA methylation and histone modification focused review. eNeuro

  85. Grande I, Berk M, Birmaher B, Vieta E (2016) Bipolar disorder. Lancet 387:1561–1572

    Article  PubMed  Google Scholar 

  86. Harrison PJ, Cipriani A, Harmer CJ et al (2016) Innovative approaches to bipolar disorder and its treatment. Ann N Y Acad Sci 1366:76–89

    Article  PubMed  PubMed Central  Google Scholar 

  87. McIntyre RS, Berk M, Brietzke E et al (2020) Bipolar disorders. Lancet 396:1841–1856

    Article  CAS  PubMed  Google Scholar 

  88. Andreescu C, Mulsant BH, Emanuel JE (2008) Complementary and alternative medicine in the treatment of bipolar disorder—a review of the evidence. J Affect Disord 110:16–26

    Article  PubMed  Google Scholar 

  89. Ortega MA, Álvarez-Mon MA, García-Montero C et al (2013) Microbiota–gut–brain axis mechanisms in the complex network of bipolar disorders: potential clinical implications and translational opportunities. Mol Psychiatry 1–29

  90. McGuinness AJ, Davis JA, Dawson SL et al (2022) A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Mol Psychiatry 27(4):1920–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bartoli F, Misiak B, Callovini T et al (2021) The kynurenine pathway in bipolar disorder: a meta-analysis on the peripheral blood levels of tryptophan and related metabolites. Mol Psychiatry 26:3419–3429

    Article  CAS  PubMed  Google Scholar 

  92. Evans SJ, Bassis CM, Hein R et al (2017) The gut microbiome composition associates with bipolar disorder and illness severity. J Psychiatr Res 87:23–29

    Article  PubMed  Google Scholar 

  93. Fries GR, Walss-Bass C, Bauer ME, Teixeira AL (2019) Revisiting inflammation in bipolar disorder. Pharmacol Biochem Behav 177:12–19

    Article  CAS  PubMed  Google Scholar 

  94. Manji HK, Quiroz JA, Payne JL et al (2003) The underlying neurobiology of bipolar disorder. World Psychiatry 2:136

    PubMed  PubMed Central  Google Scholar 

  95. Painold A, Mörkl S, Kashofer K et al (2019) A step ahead: exploring the gut microbiota in inpatients with bipolar disorder during a depressive episode. Bipolar Disord 21:40–49

    Article  CAS  PubMed  Google Scholar 

  96. Schirmer M, Smeekens SP, Vlamakis H et al (2016) Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167(1125–1136):e8

    Google Scholar 

  97. Strandwitz P (2018) Neurotransmitter modulation by the gut microbiota. Brain Res 1693:128–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Doney E, Cadoret A, Dion-Albert L, Lebel M, Menard C (2022) Inflammation-driven brain and gut barrier dysfunction in stress and mood disorders. Eur J Neurosci 55:2851–2894

    Article  CAS  PubMed  Google Scholar 

  99. Vos T, Abajobir AA, Abate KH et al (2017) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390:1211–1259

    Article  Google Scholar 

  100. Lally J, MacCabe JH (2015) Antipsychotic medication in schizophrenia: a review. Br Med Bull 114:169–179

    Article  CAS  PubMed  Google Scholar 

  101. Dinan T, Borre Y, Cryan J (2014) Genomics of schizophrenia: time to consider the gut microbiome? Mol Psychiatry 19:1252–1257

    Article  CAS  PubMed  Google Scholar 

  102. Munawar N, Ahsan K, Muhammad K et al (2021) Hidden role of gut microbiome dysbiosis in schizophrenia: Antipsychotics or psychobiotics as therapeutics? Int J Mol Sci 22:7671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Eaton W, Mortensen PB, Agerbo E, Byrne M, Mors O, Ewald H (2004) Coeliac disease and schizophrenia: population based case control study with linkage of Danish national registers. BMJ 328:438–439

    Article  PubMed  PubMed Central  Google Scholar 

  104. Zamanpoor M (2020) Schizophrenia in a genomic era: a review from the pathogenesis, genetic and environmental etiology to diagnosis and treatment insights. Psychiatr Genet 30:1–9

    Article  PubMed  Google Scholar 

  105. McCutcheon RA, Reis Marques T, Howes OD (2020) Schizophrenia-an overview. JAMA. Psychiatry 77:201–210

    Google Scholar 

  106. Li S, Song J, Ke P et al (2021) The gut microbiome is associated with brain structure and function in schizophrenia. Sci Rep 11:9743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Husted JA, Ahmed R, Chow EW, Brzustowicz LM, Bassett AS (2012) Early environmental exposures influence schizophrenia expression even in the presence of strong genetic predisposition. Schizophr Res 137:166–168

    Article  PubMed  PubMed Central  Google Scholar 

  108. Golofast B, Vales K (2020) The connection between microbiome and schizophrenia. Neurosci Biobehav Rev 108:712–731

    Article  PubMed  Google Scholar 

  109. Nikolova VL, Smith MRB, Hall LJ, Cleare AJ, Stone JM, Young AH (2021) Perturbations in gut microbiota composition in psychiatric disorders: a review and meta-analysis. JAMA Psychiat 78:1343–1354

    Article  Google Scholar 

  110. He Y, Kosciolek T, Tang J et al (2018) Gut microbiome and magnetic resonance spectroscopy study of subjects at ultra-high risk for psychosis may support the membrane hypothesis. Eur Psychiatry 53:37–45

    Article  PubMed  Google Scholar 

  111. Nguyen TT, Kosciolek T, Eyler LT, Knight R, Jeste DV (2018) Overview and systematic review of studies of microbiome in schizophrenia and bipolar disorder. J Psychiatr Res 99:50–61

    Article  PubMed  PubMed Central  Google Scholar 

  112. Szeligowski T, Yun AL, Lennox BR, Burnet PW (2020) The gut microbiome and schizophrenia: the current state of the field and clinical applications. Front Psych 11:156

    Article  Google Scholar 

  113. Schwarz JM, Bilbo SD (2012) Sex, glia, and development: interactions in health and disease. Horm Behav 62:243–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Davey KJ, O’Mahony SM, Schellekens H et al (2012) Gender-dependent consequences of chronic olanzapine in the rat: effects on body weight, inflammatory, metabolic and microbiota parameters. Psychopharmacology 221:155–169

    Article  CAS  PubMed  Google Scholar 

  115. Zhu F, Guo R, Wang W et al (2020) Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Mol Psychiatry 25:2905–2918

    Article  CAS  PubMed  Google Scholar 

  116. Schwarz E, Maukonen J, Hyytiäinen T et al (2018) Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response. Schizophr Res 192:398–403

    Article  PubMed  Google Scholar 

  117. Shen Y, Xu J, Li Z et al (2018) Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: a cross-sectional study. Schizophr Res 197:470–477

    Article  PubMed  Google Scholar 

  118. O’Mahony SM, Clarke G, Borre Y, Dinan TG, Cryan J (2015) Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277:32–48

    Article  PubMed  Google Scholar 

  119. Stilling RM, van de Wouw M, Clarke G, Stanton C, Dinan TG, Cryan JF (2016) The neuropharmacology of butyrate: the bread and butter of the microbiota-gut-brain axis? Neurochem Int 99:110–132

    Article  CAS  PubMed  Google Scholar 

  120. Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG (2021) The role of the gut microbiome in the development of schizophrenia. Schizophr Res 234:4–23

    Article  CAS  PubMed  Google Scholar 

  121. Flowers SA, Baxter NT, Ward KM et al (2019) Effects of atypical antipsychotic treatment and resistant starch supplementation on gut microbiome composition in a cohort of patients with bipolar disorder or schizophrenia. Pharmacotherapy 39(2):161–170

  122. Manchia M, Fontana A, Panebianco C et al (2021) Involvement of gut microbiota in schizophrenia and treatment resistance to antipsychotics. Biomedicines 9

  123. Seeman MV (2021) The gut microbiome and antipsychotic treatment response. Behav Brain Res 396:112886

    Article  PubMed  Google Scholar 

  124. Huang J, Liu C, Yang Y et al (2022) The effects of probiotics plus dietary fiber on antipsychotic-induced weight gain: a randomized clinical trial. Transl Psychiatry 12:185

    Article  PubMed  PubMed Central  Google Scholar 

  125. Huang J, Kang D, Zhang F et al (2022) Probiotics plus dietary fiber supplements attenuate olanzapine-induced weight gain in drug-naïve first-episode schizophrenia patients: two randomized clinical trials. Schizophr Bull 48:850–859

    Article  PubMed  PubMed Central  Google Scholar 

  126. Zheng P, Zeng B, Liu M et al (2019) The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci Adv 5:eaau8317

  127. Bonaz B, Bazin T, Pellissier S (2018) The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci 12:49

    Article  PubMed  PubMed Central  Google Scholar 

  128. Han Y, Wang B, Gao H et al (2022) Vagus nerve and underlying impact on the gut microbiota-brain axis in behavior and neurodegenerative diseases. J Inflamm Res 15:6213–6230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Nieto R, Kukuljan M, Silva H (2013) BDNF and schizophrenia: from neurodevelopment to neuronal plasticity, learning, and memory. Front Psych 4:45

    CAS  Google Scholar 

  130. Pape K, Tamouza R, Leboyer M, Zipp F (2019) Immunoneuropsychiatry—novel perspectives on brain disorders. Nat Rev Neurol 15:317–328

    Article  PubMed  Google Scholar 

  131. Yuan X, Kang Y, Zhuo C, Huang X-F, Song X (2019) The gut microbiota promotes the pathogenesis of schizophrenia via multiple pathways. Biochem Biophys Res Commun 512:373–380

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DA designed the study. DA, EÇ, ÖC, FGB, and ÇÖ wrote the main manuscript text. EÇ, ÖC, and FGB prepared all figures and tables. DA, FÖ, and RC critically revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Duygu Ağagündüz.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable. The authors did not conduct any studies using human or animal subjects for this publication.

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ağagündüz, D., Çelik, E., Cemali, Ö. et al. Probiotics, Live Biotherapeutic Products (LBPs), and Gut-Brain Axis Related Psychological Conditions: Implications for Research and Dietetics. Probiotics & Antimicro. Prot. 15, 1014–1031 (2023). https://doi.org/10.1007/s12602-023-10092-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-023-10092-4

Keywords

Navigation