Skip to main content
Log in

Epidermal visualized health monitoring system based on stretchable and washable TPU hybrid conductive microtextiles

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Electronic textiles, an emerging class of electronic technology, offer exciting opportunities for seamless integration with the human body. Numerous applications have been developed based on electronic textiles. However, researches on integrating multiple electronic textile-based devices are still few. In this study, we present a system integrated with an electrocardiogram monitoring sensor and an electroluminescence device based on stretchable and washable conductive microtextiles. The signal is acquired by an electrocardiograph amplifier and displayed by a dual-color electroluminescence device based on the processed results. The integrated electronic device has excellent moisture permeability and comfort for long-term wearing. The system reported in this study opens a new avenue for the application of electronic textiles in health monitoring, robotic prosthetics, and competitive sports.

Graphical abstract

摘要

电子织物是一种新兴的电子技术, 为与人体的无缝集成的智能感知提供了具有前景的机会。基于电子织物的许多应用已经开发出来, 但对于集成多种电子器件的复杂功能器件的研究还很少。在这项研究中, 我们提出了一种集成了心电图监测传感器和电致发光设备的可拉伸透气织物系统。该信号由心电图放大器获取, 并根据处理结果由双色电致发光显示器显示。该集成电子装置具有良好的透气性和长期佩戴的舒适性。本研究报告的系统为电子织物在健康监测、机器人假肢和竞技运动中的应用开辟了一条新的途径。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chung HU, Kim BH, Lee JY, Lee J, Xie Z, Ibler EM, Lee K, Banks A, Jeong JY, Kim J, Ogle C, Grande D, Yu Y, Jang H, Assem P, Ryu D, Kwak JW, Namkoong M, Park JB, Lee Y, Kim DH, Ryu A, Jeong J, You K, Ji B, Liu Z, Huo Q, Feng X, Deng Y, Xu Y, Jang KI, Kim J, Zhang Y, Ghaffari R, Rand CM, Schau M, Hamvas A, Weese-Mayer DE, Huang Y, Lee SM, Lee CH, Shanbhag NR, Paller AS, Xu S, Rogers JA. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science. 2019;363(6430):780. https://doi.org/10.1126/science.aau0780.

    Article  CAS  Google Scholar 

  2. Wang M, Yan Z, Wang T, Cai P, Gao S, Zeng Y, Wan C, Wang H, Pan L, Yu J, Pan S, He K, Lu J, Chen X. Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat Electron. 2020;3(9):563. https://doi.org/10.1038/s41928-020-0422-z.

    Article  Google Scholar 

  3. Tian JH, Fan RH, Yang PT, Wu HK, Jiang S, Zhou YL, Andrey KS. Flexible silver nanorods/carbon fiber felt metacomposites with epsilon-near-zero property adjusted by compressive deformation. Rare Met. 2023;42(10):3318. https://doi.org/10.1007/s12598-023-02390-1.

  4. Chen G, Shen S, Tat T, Zhao X, Zhou Y, Fang Y, Chen J. Wearable respiratory sensors for COVID-19 monitoring. VIEW. 2022;3(5):20220024. https://doi.org/10.1002/VIW.20220024.

    Article  PubMed  Google Scholar 

  5. Hu ZD, Sun XY, Li HF, Kang YR, Song XQ, Wang P, Luan QT, Wang XD, Chi ZT, Xie WF. Cobalt monosulfide nanofibers: ethanol sensing and magnetic properties. Rare Met. 2021;40(6):1554. https://doi.org/10.1007/s12598-020-01648-2.

    Article  CAS  Google Scholar 

  6. Zhou Y, Zhao X, Xu J, Fang Y, Chen G, Song Y, Li S, Chen J. Giant magnetoelastic effect in soft systems for bioelectronics. Nat Mater. 2021;20(12):1670. https://doi.org/10.1038/s41563-021-01093-1.

    Article  CAS  PubMed  Google Scholar 

  7. Zhou YL, Cheng WN, Bai YZ, Hou C, Li K, Huang YA. Rise of flexible high-temperature electronics. Rare Met. 2023:42(6):1773. https://doi.org/10.1007/s12598-023-02298-w298-w298-w.

  8. Gao W, Ota H, Kiriya D, Takei K, Javey A. Flexible electronics toward wearable sensing. Acc Chem Res. 2019;52(3):523. https://doi.org/10.1021/acs.accounts.8b00500.

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Wang S, Zhang J, Ma X, Cao S, Sun Y, Feng S, Fang T, Kong D. A highly stretchable and permeable liquid metal micromesh conductor by physical deposition for epidermal electronics. ACS Appl Mater Interfaces. 2022;14(11):13713. https://doi.org/10.1021/acsami.1c25206.

    Article  CAS  PubMed  Google Scholar 

  10. Peng X, Dong K, Ye C, Jiang Y, Zhai S, Cheng R, Liu D, Gao X, Wang J, Wang ZL. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci Adv. 2020;6(26):9624. https://doi.org/10.1126/sciadv.aba9624.

    Article  CAS  Google Scholar 

  11. Jang KI, Han SY, Xu S, Mathewson KE, Zhang Y, Jeong JW, Kim GT, Webb RC, Lee JW, Dawidczyk TJ, Kim RH, Song YM, Yeo WH, Kim S, Cheng H, Rhee SI, Chung J, Kim B, Chung HU, Lee D, Yang Y, Cho M, Gaspar JG, Carbonari R, Fabiani M, Gratton G, Huang Y, Rogers JA. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat Commun. 2014;5(9):4779. https://doi.org/10.1038/ncomms5779.

    Article  CAS  PubMed  Google Scholar 

  12. Choi S, Kwon S, Kim H, Kim W, Kwon JH, Lim MS, Lee HS, Choi KC. Highly flexible and efficient fabric-based organic light-emitting devices for clothing-shaped wearable displays. Sci Rep. 2017;7(1):6424. https://doi.org/10.1038/s41598-017-06733-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou Y, Qu Y, Yin L, Cheng W, Huang Y, Fan R. Coassembly of elastomeric microfibers and silver nanowires for fabricating ultra-stretchable microtextiles with weakly and tunable negative permittivity. Compos Sci Technol. 2022;223:109415. https://doi.org/10.1016/j.compscitech.2022.109415.

    Article  CAS  Google Scholar 

  14. Hossain MM, Li BM, Sennik B, Jur JS, Bradford PD. Adhesive free, conformable and washable carbon nanotube fabric electrodes for biosensing. npj Flex Electron. 2022;6(1):97. https://doi.org/10.1038/s41528-022-00230-3.

    Article  CAS  Google Scholar 

  15. He W, Wang C, Wang H, Jian M, Lu W, Liang X, Zhang X, Yang F, Zhang Y. Integrated textile sensor patch for real-time and multiplex sweat analysis. Sci Adv. 2019;5(11):649. https://doi.org/10.1126/sciadv.aax0649.

    Article  CAS  Google Scholar 

  16. Yin J, Wang S, Di Carlo A, Chang A, Wan X, Xu J, Xiao X, Chen J. Smart textiles for self-powered biomonitoring. Med-X. 2023;1(1):3. https://doi.org/10.1007/s44258-023-00001-3.

    Article  Google Scholar 

  17. Zhao X, Zhou Y, Xu J, Chen G, Fang Y, Tat T, Xiao X, Song Y, Li S, Chen J. Soft fibers with magnetoelasticity for wearable electronics. Nat Commun. 2021;12(1):6755. https://doi.org/10.1038/s41467-021-27066-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Libanori A, Chen G, Zhao X, Zhou Y, Chen J. Smart textiles for personalized healthcare. Nat Electron. 2022;5(3):142. https://doi.org/10.1038/s41928-022-00723-z.

    Article  CAS  Google Scholar 

  19. Kang J, Kim H, Kim KS, Lee SK, Bae S, Ahn JH, Kim YJ, Choi JB, Hong BH. High-performance graphene-based transparent flexible heaters. Nano Lett. 2011;11(12):5154. https://doi.org/10.1021/nl202311v.

    Article  CAS  PubMed  Google Scholar 

  20. An BW, Gwak EJ, Kim K, Kim YC, Jang J, Kim JY, Park JU. Stretchable, transparent electrodes as wearable heaters using nanotrough networks of metallic glasses with superior mechanical properties and thermal stability. Nano Lett. 2016;16(1):471. https://doi.org/10.1021/acs.nanolett.5b04134.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao C, Zhou Y, Gu S, Cao S, Wang J, Zhang M, Wu Y, Kong D. Fully screen-printed, multicolor, and stretchable electroluminescent displays for epidermal electronics. ACS Appl Mater Interfaces. 2020;12(42):47902. https://doi.org/10.1021/acsami.0c12415.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou Y, Wang J, Li Y, Li C, Zhu H, Feng S, Cao S, Kong D. Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent displays. ACS Mater Lett. 2019;1(5):511. https://doi.org/10.1021/acsmaterialslett.9b00376.

    Article  CAS  Google Scholar 

  23. Zhou Y, Yin L, Xiang S, Yu S, Johnson HM, Wang S, Yin J, Zhao J, Luo Y, Chu PK. Unleashing the Potential of MXene‐Based Flexible Materials for High‐Performance Energy Storage Devices. Adv. Sci. 2024, 11, 2304874. https://doi.org/10.1002/advs.202304874

    Article  CAS  Google Scholar 

  24. Qu YP, Zhou YL, Luo Y, Liu Y, Ding JF, Chen YL, Gong X, Yang JL, Peng Q, Qi XS. Universal paradigm of ternary metacomposites with tunable epsilon-negative and epsilon-near-zero response for perfect electromagnetic shielding. Rare Met. 2024;43(2):796. https://doi.org/10.1007/s12598-023-02510-x.

  25. Yao Y, Chen Y, Wang K, Turetta N, Vitale S, Han B, Wang H, Zhang L, Samorì P. A robust vertical nanoscaffold for recyclable, paintable, and flexible light-emitting devices. Sci Adv. 2022;8(10):2225. https://doi.org/10.1126/sciadv.abn2225.

    Article  CAS  Google Scholar 

  26. Su R, Park SH, Ouyang X, Ahn SI, McAlpine MC. 3D-printed flexible organic light-emitting diode displays. Sci Adv. 2022;8(1):l8798. https://doi.org/10.1126/sciadv.abl8798.

    Article  CAS  Google Scholar 

  27. Nie B, Li X, Wang C, Liu H, Tian H, Chen X, Shao J. Flexible double-sided light-emitting devices based on transparent embedded interdigital electrodes. ACS Appl Mater Interfaces. 2020;12(39):43892. https://doi.org/10.1021/acsami.0c10132.

    Article  CAS  PubMed  Google Scholar 

  28. Schlingman K, Chen Y, Carmichael RS, Carmichael TB. 25 years of light-emitting electrochemical cells: a flexible and stretchable perspective. Adv Mater. 2021;33(21):2006863. https://doi.org/10.1002/adma.202006863.

    Article  CAS  Google Scholar 

  29. Zhang Z. Light-emitting materials for wearable electronics. Nat Rev Mater. 2022;7(11):839. https://doi.org/10.1038/s41578-022-00502-4.

    Article  Google Scholar 

  30. Qin Z, Zhang P, Wu Z, Yin M, Geng Y, Pan K. Coaxial electrospinning for flexible uniform white-light-emitting porous fibrous membrane. Mater Des. 2018;147:175. https://doi.org/10.1016/j.matdes.2018.03.040.

    Article  CAS  Google Scholar 

  31. Cinquino M, Prontera CT, Pugliese M, Giannuzzi R, Taurino D, Gigli G, Maiorano V. Light-emitting textiles: device architectures, working principles, and applications. Micromachines. 2021;12(6):652. https://doi.org/10.3390/mi12060652.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Si Y, Shi S, Hu J. Applications of electrospinning in human health: from detection, protection, regulation to reconstruction. Nano Today. 2023;48:101723. https://doi.org/10.1016/j.nantod.2022.101723.

    Article  Google Scholar 

  33. Wang Y, Haick H, Guo S, Wang C, Lee S, Yokota T, Someya T. Skin bioelectronics towards long-term, continuous health monitoring. Chem Soc rev. 2022;51(9):3759. https://doi.org/10.1039/D2CS00207H.

    Article  CAS  PubMed  Google Scholar 

  34. Wang L, Fu X, He J, Shi X, Chen T, Chen P, Wang B, Peng H. Application challenges in fiber and textile electronics. Adv Mater. 2020;32(5):1901971. https://doi.org/10.1002/adma.201901971.

    Article  CAS  Google Scholar 

  35. Li X, Li Z, Wang L, Ma G, Meng F, Pritchard RH, Gill EL, Liu Y, Huang YYS. Low-voltage continuous electrospinning patterning. ACS Appl Mater Interfaces. 2016;8(47):32120. https://doi.org/10.1021/acsami.6b07797.

    Article  CAS  PubMed  Google Scholar 

  36. Ewaldz E, Brettmann B. Molecular interactions in electrospinning: from polymer mixtures to supramolecular assemblies. ACS Appl Polym Mater. 2019;1(3):298. https://doi.org/10.1021/acsapm.8b00073.

    Article  CAS  Google Scholar 

  37. Zhou Y, Lian H, Li Z, Yin L, Ji Q, Li K, Qi F, Huang Y. Crack engineering boosts the performance of flexible sensors. VIEW. 2022, 3, 20220025. https://doi.org/10.1002/VIW.20220025.

    Article  Google Scholar 

  38. Hsu PC, Liu X, Liu C, Xie X, Lee HR, Welch AJ, Zhao T, Cui Y. Personal thermal management by metallic nanowire-coated textile. Nano Lett. 2015;15(1):365. https://doi.org/10.1021/nl5036572.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao H, Zhou Y, Cao S, Wang Y, Zhang J, Feng S, Wang J, Li D, Kong D. Ultrastretchable and washable conductive microtextiles by coassembly of silver nanowires and elastomeric microfibers for epidermal human–machine interfaces. ACS Mater Lett. 2021;3(7):912. https://doi.org/10.1021/acsmaterialslett.1c00128.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the program of National Key Laboratory of Application Specific Integrated Circuit and the National Nature Science Foundation of China (No. 52205593).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Chan Li, Yang Luo or Yun-Lei Zhou.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 7378 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, JB., Feng, ZH., Li, DC. et al. Epidermal visualized health monitoring system based on stretchable and washable TPU hybrid conductive microtextiles. Rare Met. 43, 3185–3193 (2024). https://doi.org/10.1007/s12598-023-02543-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02543-2

Keywords

Navigation